6533b829fe1ef96bd12897e5

RESEARCH PRODUCT

Contractions yielding new supersymmetric extensions of the poincaré algebra

J. NiederleJ. A. De AzcárragaJerzy Lukierski

subject

Mathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsLie superalgebraSupersymmetrySuperalgebraGenerator (circuit theory)Algebrasymbols.namesakeMathematics::Quantum AlgebraPoincaré conjecturesymbolsSupermatrixQuantum field theoryAlgebra over a fieldMathematics::Representation TheoryMathematical PhysicsMathematics

description

Two new Poincare superalgebras are analysed. They are obtained by the Wigner-Inonu contraction from two real forms of the superalgebra OSp(2;4;C) - one describing the N = 2 anti-de-Sitter superalgebra with a non-compact internal symmetry SO(1, 1) and the other corresponding to the de-Sitter superalgebra with internal symmetry SO(2). Both are 19-dimensional self-conjugate extensions of the Konopel'chenko superalgebra. They contain 10 Poincare generators and one generator of internal symmetry in addition to 8 odd generators half of which, however, do not commute with translations.

https://doi.org/10.1016/0034-4877(91)90037-n