6533b829fe1ef96bd1289940
RESEARCH PRODUCT
Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
T. ContrerasZ. E. MezianiR. Weiss-babaiI. J. ArnquistJ.v. CarriónJ. RennerJ. RennerN. López-marchN. López-marchL. RogersF.j. MoraJ. GenerowiczT.m. StieglerVicente HerreroF.p. SantosG. Martínez-lemaG. Martínez-lemaG. Martínez-lemaC.m.b. MonteiroR.d.p. ManoL.m.p. FernandesJ.m. Benlloch-rodríguezJ.m. Benlloch-rodríguezP. HerreroC. AdamsN. ByrnesB. PalmeiroB. PalmeiroJ.a. Hernando MorataN. YahlaliD. González-díazY. Rodriguez GarciaJ. S. DíazM. Martínez-varaP. NovellaF.i.g.m. BorgesRomain EsteveJ.f.c.a. VelosoE.d.c. FreitasJ. Martin-alboM. Del TuttoA. UsónR. GuenetteF. MonrabalF. MonrabalRoberto GutiérrezA.d. McdonaldC.d.r. AzevedoJ.t. WhiteJ.f. ToledoS. CárcelP. LebrunA. MartínezA. MartínezM. DiesburgE. ChurchA. LaingKevin BaileyJ. RodríguezM. KekicM. KekicA.b. RedwineC.a.o. HenriquesJ. EscadaL. RipollJ. TorrentLior AraziB. J. P. JonesVíctor H. AlvarezJ. HaefnerB. RomeoR. FelkaiR. FelkaiM. LosadaA. GoldschmidtJ. HauptmanK. WoodruffL. LabargaY. IferganJ.m.f. Dos SantosC. Romo-luqueJavier PérezS. CebriánSudip GhoshR. C. WebbG. DíazF. BallesterPaola FerrarioPaola FerrarioD.r. NygrenD.r. NygrenA.f.m. FernandesM. QuerolC. SofkaC. SofkaA. ParaM. SorelA.l. FerreiraK. HafidiC.a.n. CondeA. SimónJ.j. Gómez-cadenasJ.j. Gómez-cadenasJ. Muñoz VidalJ. Muñoz Vidalsubject
Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsCalibration (statistics)Computer Science::Neural and Evolutionary ComputationNuclear physicsFOS: Physical sciencesTopology (electrical circuits)01 natural sciencesConvolutional neural networkAtomicPartícules (Física nuclear)High Energy Physics - ExperimentInteraccions electró-positróTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)NuclearNuclear Matrixlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsElectron-positron interactionsMathematical PhysicsParticles (Nuclear physics)PhysicsQuantum Physics010308 nuclear & particles physicsbusiness.industryEvent (computing)Network onSIGNAL (programming language)MolecularFísicaPattern recognitionDetectorInstrumentation and Detectors (physics.ins-det)Beta DecayDouble beta decayNuclear & Particles PhysicsDoble desintegració betaIdentification (information)lcsh:QC770-798Física nuclearArtificial intelligencebusinessdescription
[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-28 | Journal of High Energy Physics |