6533b829fe1ef96bd12899c1

RESEARCH PRODUCT

Differences in Cellular Encapsulation of Six Termite (Isoptera) Species Against Infection by the Entomopathogenic FungusMetarhizium anisopliae

Nan-yao SuThomas ChouvencAlain Robert

subject

0106 biological sciencesdisease resistanceBiodiversité et EcologieDefence mechanismsMetarhizium anisopliaeFunguscellular encapsulationBiology01 natural sciencesMicrobiologyBiodiversity and Ecology03 medical and health sciencesReticulitermesmedicinedisease resistance;cellular encapsulation;hemocytesEcology Evolution Behavior and SystematicsEpizootic030304 developmental biology0303 health sciencesfungimedicine.diseasebiology.organism_classificationEusocialityhemocytes010602 entomologyEastern subterranean termiteInsect ScienceEntomopathogenic fungus[SDE.BE]Environmental Sciences/Biodiversity and Ecology

description

Termites (Isoptera) are eusocial insects, which live in an environment that can favor the spread of pathogens. To reduce the chance of an epizootic within a colony, termites have evolved many defense mechanisms. Most studies have focused on the social aspect of disease resistance, while the individual capacity of a termite to survive an infection remains poorly documented. We previously showed that when the eastern subterranean termite, Reticulitermes flavipes (Kollar), was exposed to the entomopathogenic fungus, Metarhizium anisopliae (Metch.) Sorokin, cellular encapsulation of the penetrating fungus was one of the last lines of defense for individual termites to prevent internal mycosis. The current study used histological preparations to (i) compare cellular encapsulation of M. anisopliae among 6 termite species from 5 families that evolved in habitats with different pathogenic pressures, and (ii) examine the effect of cellular encapsulation on the survival of termites exposed to M. anisopliae. Our results showed that all termite species were able to use hemocytes to encapsulate M. anisopliae when this fungus penetrated through the insect cuticle, but that the physiological cost to successfully encapsulate M. anisopliae varied greatly among termite species. We suggest that termite species, which evolved in a habitat with high pathogenic pressure, are adapted with more efficient immune reactions than those that evolved in a habitat with low pathogenic pressure.

https://doi.org/10.1653/024.094.0302