6533b829fe1ef96bd1289a97
RESEARCH PRODUCT
Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction
Jairo SinovaJairo SinovaJan ZemenTomas JungwirthVivek AminJ. ŽEleznýsubject
Materials scienceCondensed matter physicsMagnetoresistanceCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsCoupling (probability)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismTunnel junctionCondensed Matter::Superconductivity0103 physical sciencesThermoelectric effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyAnisotropyOrder of magnitudeQuantum tunnellingdescription
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's magnetization configuration. The magneto-Seebeck effect results from variations in asymmetry of the energy-dependent transmission instead. We report that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal magnetic-transport anisotropy.
year | journal | country | edition | language |
---|---|---|---|---|
2014-04-22 |