0000000000043121
AUTHOR
J. ŽElezný
Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism
Electrical spin-current generation is among the core phenomena driving the field of spintronics. Using {\em ab initio} calculations we show that a room-temperature metallic collinear antiferromagnet RuO$_2$ allows for highly efficient spin-current generation, arising from anisotropically-split bands with conserved up and down spins along the N\'eel vector axis. The zero net moment antiferromagnet acts as an electrical spin-splitter with a 34$^\circ$ propagation angle between spin-up and spin-down currents. Correspondingly, the spin-conductivity is a factor of three larger than the record value from a survey of 20,000 non-magnetic spin-Hall materials. We propose a versatile spin-splitter-tor…
Relativistic Neel-order fields induced by electrical current in antiferromagnets
We predict that a lateral electrical current in antiferromagnets can induce non-equilibrium N\'eel order fields, i.e. fields whose sign alternates between the spin sublattices, which can trigger ultra-fast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intra-band and to the intrinsic inter-band spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we considered bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry model…
Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet
Spin-orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the N\'{e}el vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the co-existence of Dirac quasiparticles and N\'{e}el spin-orbit torques. We identify the non-symmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the N\'{e}el vector reorientation. We predict that this concept, verified by minimal model and density functional calculations in the CuMnAs semimetal ant…
Electrical switching of perpendicular magnetization in a single ferromagnetic layer
We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…
Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's mag…
Room-temperature spin-orbit torque in NiMnSb
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electric…
Spin-orbit torques in locally and globally non-centrosymmetric crystals: Antiferromagnets and ferromagnets
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. \v{Z}elezn\'y et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analys…
Elektrónová a pásová štruktúra CuMnAs študovaná optickou a fotoemissinou spektroskopiou
Tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confi…
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devi…