6533b829fe1ef96bd1289acd
RESEARCH PRODUCT
NGS‐based liquid biopsy profiling identifies mechanisms of resistance to ALK inhibitors: a step toward personalized NSCLC treatment
Rosario García-campeloMagdalena ArnalVirginia CalvoVíctor González‐rumayorEloisa Jantus-lewintreEstela Sánchez-herreroNoemi ReguartSandra Sanz-morenoCarlos CampsAtocha RomeroDietmar Fernández‐orthMariano ProvencioBartomeu MassutiRoberto Serna-blascoVadym IvanchukManuel Dómine GomezSilvia Calabuig-fariñasJose Miguel Sanchezsubject
0301 basic medicineCancer ResearchLung NeoplasmsEML4-ALKAntineoplastic AgentsEML4‐ALKmedicine.disease_causeNSCLCIDH2Circulating Tumor DNA03 medical and health sciencesALK-TKI0302 clinical medicineCarcinoma Non-Small-Cell LungMAP2K1hemic and lymphatic diseasesALK‐TKIGeneticsmedicineHumansAnaplastic lymphoma kinaseAnaplastic Lymphoma KinaseDigital polymerase chain reactionPrecision MedicineLiquid biopsyProtein Kinase InhibitorsneoplasmsResearch ArticlesRC254-282MutationCrizotinibliquid biopsybusiness.industryHigh-Throughput Nucleotide SequencingNeoplasms. Tumors. Oncology. Including cancer and carcinogensGeneral MedicineResistance mutation3. Good health030104 developmental biologyOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisNGSMutationCancer researchMolecular MedicinebusinessResearch Articlemedicine.drugdescription
Despite impressive and durable responses, nonsmall cell lung cancer (NSCLC) patients treated with anaplastic lymphoma kinase (ALK) inhibitors (ALK‐Is) ultimately progress due to development of resistance. Here, we have evaluated the clinical utility of circulating tumor DNA (ctDNA) profiling by next‐generation sequencing (NGS) upon disease progression. We collected 26 plasma and two cerebrospinal fluid samples from 24 advanced ALK‐positive NSCLC patients at disease progression to an ALK‐I. These samples were analyzed by NGS and digital PCR. A tool to retrieve variants at the ALK locus was developed (VALK tool). We identified at least one resistance mutation in the ALK locus in ten (38.5%) plasma samples; the G1269A and G1202R mutations were the most prevalent among patients progressing to first‐ and second‐generation ALK‐Is, respectively. Overall, 61 somatic mutations were detected in 14 genes: TP53, ALK, PIK3CA, SMAD4, MAP2K1 (MEK1), FGFR2, FGFR3, BRAF, EGFR, IDH2, MYC, MET, CCND3, and CCND1. Specifically, a deletion in exon 19 in EGFR, a non‐V600 BRAF mutation (G466V), and the F129L mutation in MAP2K1 were identified in four patients who showed no objective survival benefit from ALK‐Is. Potential ALK‐I‐resistance mutations were also found in PIK3CA and IDH2. Finally, a c‐MYC gain, along with a loss of CCND1 and FGFR3, was detected in a patient progressing on a first‐line treatment with crizotinib. We conclude that NGS analysis of liquid biopsies upon disease progression identified different putative ALK‐I‐resistance mutations in most cases and could be a valuable approach for therapy decision making.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 | Molecular Oncology |