6533b829fe1ef96bd128a2e6

RESEARCH PRODUCT

Single scatterings in single artificial atoms: Quantum coherence and entanglement

Pekka KoskinenClaudia SifelUlrich Hohenester

subject

PhysicsQuantum discordCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsQuantum point contactCavity quantum electrodynamicsFOS: Physical sciencesQuantum entanglementCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum dot laserQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsBiexciton

description

We employ the quantum-jump approach to study single scatterings in single semiconductor quantum dots. Two prototypical situations are investigated. First, we analyze two-photon emissions from the cascade biexciton decay of a dot where the single-exciton states exhibit a fine-structure splitting. We show that this splitting results for appropriately chosen polarization filters in an oscillatory behavior of two-photon correlations, and carefully examine the proper theoretical description of the underlying scattering processes. Secondly, we analyze the decay of a single-electron charged exciton in a quantum dot embedded in a field effect structure. We show how the quantum properties of the charged exciton are transferred through tunneling and relaxation to the spin entanglement between electrons in the dot and contact, and identify the pertinent disentanglement mechanisms.

https://doi.org/10.1103/physrevb.68.245304