6533b829fe1ef96bd128a32b
RESEARCH PRODUCT
Varieties of almost polynomial growth: classifying their subvarieties
Daniela La Mattinasubject
Discrete mathematicsPure mathematicsJordan algebraCODIMENSION GROWTHSubvarietyGeneral MathematicsTriangular matrixUniversal enveloping algebraIDENTITIESPI-ALGEBRASAlgebra representationDivision algebraCellular algebraComposition algebraT-IDEALSMathematicsdescription
Let G be the infinite dimensional Grassmann algebra over a field F of characteristic zero and UT2 the algebra of 2 x 2 upper triangular matrices over F. The relevance of these algebras in PI-theory relies on the fact that they generate the only two varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. In this paper we completely classify, up to PI-equivalence, the associative algebras A such that A is an element of Var(G) or A is an element of Var(UT2).
year | journal | country | edition | language |
---|---|---|---|---|
2007-05-04 |