6533b829fe1ef96bd128a3c3

RESEARCH PRODUCT

Temperature-Dependence of Solvent-Induced Stokes Shift and Fluorescence Tunability in Carbon Nanodots

Alice SciortinoMarco CannasFabrizio Messina

subject

Materials sciencefluorescence tunabilitychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceslcsh:QD241-441symbols.namesakelcsh:Organic chemistrycarbon nanodotCarbon nanodotsStokes shiftcarbon nanodotsSettore FIS/01 - Fisica SperimentaleRelaxation (NMR)SolvatochromismSolvationGeneral Medicine021001 nanoscience & nanotechnologycryogenic optical studyFluorescence0104 chemical sciencesSolventchemistryChemical physicssymbols0210 nano-technologyCarbon

description

We carried out a cryogenic investigation on the optical properties of carbon dots, aiming to better understand their emission mechanism and the role of the solvent. The solvatochromic Stokes shift is quantified by a low temperature approach which allows freezing of the photo-excited state of carbon dots, preventing any solvation relaxation. Moreover, the reduction in temperature helps to identify the dynamical inhomogeneous contribution to the broadening of the emission band; therefore, disentangling the role of solvent from other types of broadening, such as the homogeneous and the static inhomogeneous contributions.

10.3390/c5020020https://www.mdpi.com/2311-5629/5/2/20