6533b829fe1ef96bd128a484

RESEARCH PRODUCT

ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE LEARNING

Raphaëlle SauzèdeJuan Emmanuel JohnsonAna B. RuescasGustau Camps-vallsHervé Claustre

subject

lcsh:Applied optics. Photonics010504 meteorology & atmospheric sciencesMesoscale meteorologyMachine learningcomputer.software_genre01 natural scienceslcsh:Technology03 medical and health sciencesOcean gyre14. Life underwaterAltimeterComputingMilieux_MISCELLANEOUSArgo030304 developmental biology0105 earth and related environmental sciences0303 health sciencesgeographygeography.geographical_feature_categorybusiness.industrylcsh:Tlcsh:TA1501-1820Global changeOcean dynamics13. Climate actionOcean colorlcsh:TA1-2040[SDE]Environmental SciencesEnvironmental scienceSatelliteArtificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)computer

description

Understanding and quantifying ocean carbon sinks of the planet is of paramount relevance in the current scenario of global change. Particulate organic carbon (POC) is a key biogeochemical parameter that helps us characterize export processes of the ocean. Ocean color observations enable the estimation of bio-optical proxies of POC (i.e. particulate backscattering coefficient, bbp) in the surface layer of the ocean quasi-synoptically. In parallel, the Argo program distributes vertical profiles of the physical properties with a global coverage and a high spatio-temporal resolution. Merging satellite ocean color and Argo data using a neural networkbased method has already shown strong potential to infer the vertical distribution of bio-optical properties at global scale with high space-time resolution. This method is trained and validated using a database of concurrent vertical profiles of temperature, salinity, and bio-optical properties, i.e. bbp, collected by Biogeochemical-Argo (BGC-Argo) floats, matched up with satellite ocean color products. The present study aims at improving this method by 1) using a larger dataset from BGC-Argo network since 2016 for training, 2) using additional inputs such as altimetry data, which provide significant information on mesoscale processes impacting the vertical distribution of bbp, 3) improving the vertical resolution of estimation, and 4) examining the potential of alternative machine learning-based techniques. As a first attempt with the new data, we used some feature-specific preprocessing routines followed by a Multi-Output Random Forest algorithm on two regions with different ocean dynamics: North Atlantic and Subtropical Gyres. The statistics and the bbp profiles obtained from the validation floats show promising results and suggest this direction is worth investigating even further at global scale.

10.5194/isprs-annals-v-2-2020-949-2020https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2020/949/2020/isprs-annals-V-2-2020-949-2020.pdf