0000000000041340
AUTHOR
Juan Emmanuel Johnson
Disentangling Derivatives, Uncertainty and Error in Gaussian Process Models
Gaussian Processes (GPs) are a class of kernel methods that have shown to be very useful in geoscience applications. They are widely used because they are simple, flexible and provide very accurate estimates for nonlinear problems, especially in parameter retrieval. An addition to a predictive mean function, GPs come equipped with a useful property: the predictive variance function which provides confidence intervals for the predictions. The GP formulation usually assumes that there is no input noise in the training and testing points, only in the observations. However, this is often not the case in Earth observation problems where an accurate assessment of the instrument error is usually a…
Estimating Information in Earth System Data with Machine Learning
El aprendizaje automático ha hecho grandes avances en la ciencia e ingeniería actuales en general y en las ciencias de la Tierra en particular. Sin embargo, los datos de la Tierra plantean problemas particularmente difíciles para el aprendizaje automático debido no sólo al volumen de datos implicado, sino también por la presencia de correlaciones no lineales tanto espaciales como temporales, por una gran diversidad de fuentes de ruido y de incertidumbre, así como por la heterogeneidad de las fuentes de información involucradas. Más datos no implica necesariamente más información. Por lo tanto, extraer conocimiento y contenido informativo mediante el análisis y el modelado de datos resulta c…
ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE LEARNING
Understanding and quantifying ocean carbon sinks of the planet is of paramount relevance in the current scenario of global change. Particulate organic carbon (POC) is a key biogeochemical parameter that helps us characterize export processes of the ocean. Ocean color observations enable the estimation of bio-optical proxies of POC (i.e. particulate backscattering coefficient, bbp) in the surface layer of the ocean quasi-synoptically. In parallel, the Argo program distributes vertical profiles of the physical properties with a global coverage and a high spatio-temporal resolution. Merging satellite ocean color and Argo data using a neural networkbased method has already shown strong potentia…
Accounting for Input Noise in Gaussian Process Parameter Retrieval
Gaussian processes (GPs) are a class of Kernel methods that have shown to be very useful in geoscience and remote sensing applications for parameter retrieval, model inversion, and emulation. They are widely used because they are simple, flexible, and provide accurate estimates. GPs are based on a Bayesian statistical framework which provides a posterior probability function for each estimation. Therefore, besides the usual prediction (given in this case by the mean function), GPs come equipped with the possibility to obtain a predictive variance (i.e., error bars, confidence intervals) for each prediction. Unfortunately, the GP formulation usually assumes that there is no noise in the inpu…