6533b829fe1ef96bd128a617

RESEARCH PRODUCT

Vacuum-Deposited Multication Tin-Lead Perovskite Solar Cells

Henk J. BolinkAroa CastilloChris DreessenPablo P. BoixAna M. Igual-muñoz

subject

Materials scienceBand gapEnergy Engineering and Power TechnologyHalidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionVacuum depositionlawSolar cellMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Electrical and Electronic EngineeringMaterialsCèl·lules fotoelèctriquesPerovskite (structure)business.industryPhotovoltaic system021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopychemistryOptoelectronics0210 nano-technologybusinessTin

description

The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum co-deposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as one of the performance limiting factors.

10.1021/acsaem.9b02413https://hdl.handle.net/10550/74580