0000000000089679

AUTHOR

Chris Dreessen

0000-0001-7444-6900

showing 21 related works from this author

Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain

2019

​This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.9b04991

Steady state (electronics)Materials scienceIMPSImpedance spectroscopy610 Medicine & health02 engineering and technology010402 general chemistrycomputer.software_genre01 natural sciencesChemical societyGeneral Materials ScienceTransient (computer programming)Device simulation10266 Clinic for Reconstructive SurgeryMaterials621.3: Elektrotechnik und ElektronikCèl·lules fotoelèctriquesTrapsPerovskite (structure)Drift-diffusion modelingProgramming languagePerovskite solar cellsHysteresis021001 nanoscience & nanotechnology2500 General Materials Science0104 chemical sciencesMobile ionsFrequency domainTransient photo-current0210 nano-technologycomputer
researchProduct

Potential and limitations of CsBi3I10 as a photovoltaic material

2020

Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered at 700 nm, corresponding to a bandgap of 1.77 eV. These characteristics make CsBi3I10 a promising low-toxicity material for wide bandgap photovoltaics. Nevertheless, the performance of this material as a semiconductor in solar cells remains rather limited, which can be at least partially ascribed to a low charge carrier mobility, as determined from pulsed-radiolysis time-resolved microwave conductivity. Further dev…

PhotoluminescenceMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryBand gapDoping02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesSemiconductorVacuum depositionPhotovoltaicsOptoelectronicsGeneral Materials ScienceThermal stabilityThin film0210 nano-technologybusinessMaterials
researchProduct

Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells

2019

Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole t…

Materials scienceHydrogenMetallurgyMolybdenum oxidechemistry.chemical_elementMolybdenum bronzechemistry.chemical_compoundGeneral EnergychemistryMOLIBDÊNIOMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Room-Temperature Cubic Phase Crystallization and High Stability of Vacuum-Deposited Methylammonium Lead Triiodide Thin Films for High-Efficiency Sola…

2019

Methylammonium lead triiodide (MAPI) has emerged as a high-performance photovoltaic material. Common understanding is that at room temperature it adopts a tetragonal phase and it only converts to the perfect cubic phase around 50-60 ºC. Most MAPI films are prepared using a solution-based coating process, yet they can also be obtained by vapor phase deposition methods. Vapor phase processed MAPI films have significantly different characteristics compared to their solvent processed analogous, such as a relatively small crystal grain sizes and short excited state lifetimes. Yet solar cells based on vapor phase processed MAPI films exhibit high power conversion efficiencies. Surprisingly, after…

Materials scienceAnalytical chemistry02 engineering and technologyCubic crystal system010402 general chemistry7. Clean energy01 natural scienceslaw.inventionchemistry.chemical_compoundTetragonal crystal systemlawPhase (matter)Deposition (phase transition)General Materials ScienceThin filmTriiodideCrystallizationMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Mechanical Engineering021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materials0210 nano-technology
researchProduct

High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers

2020

In perovskite solar cells, the choice of appropriate transport layers and electrodes is of great importance to guarantee efficient charge transport and collection, minimizing recombination losses. The possibility to sequentially process multiple layers by vacuum methods offers a tool to explore the effects of different materials and their combinations on the performance of optoelectronic devices. In this work, the effect of introducing interlayers and altering the electrode work function has been evaluated in fully vacuum-deposited perovskite solar cells. We compared the performance of solar cells employing common electron buffer layers such as bathocuproine (BCP), with other injection mate…

Materials scienceContinuous operationGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyElectron010402 general chemistry7. Clean energy01 natural sciencesWork functionCèl·lules fotoelèctriquesDiodePerovskite (structure)business.industryHigh voltageGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistrySemiconductorsElectrodeOptoelectronicsLithiumEnergies renovables0210 nano-technologybusinessRSC Advances
researchProduct

Stable Light-Emitting Electrochemical Cells Using Hyperbranched Polymer Electrolyte

2021

The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2…

chemistry.chemical_classificationMaterials sciencePhotoluminescencePolymer electrolytesHyperbranched polymersPolymerElectrolyteElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionElectrochemical cellBiomaterialsElectroquímicaSolid-state lightingchemistryChemical engineeringlawElectrochemistryMaterials
researchProduct

Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells

2019

Vacuum-deposition of perovskite solar cells can achieve efficiencies rivalling solution-based methods and it allows for more complex device stacks. MoO3 has been used to enhance carrier extraction to the transparent bottom electrode in a p-i-n configuration, here we show that by inserting an organic charge transport molecule it can also be used on the top of a perovskite absorber in a n-i-p configuration. This strategy enables the first vacuum-deposited perovskite solar cells with metal oxides as charge transporting layers for both electrons and holes leading to power conversion efficiency > 19 %.

Materials sciencePassivationbusiness.industryGeneral Chemical EngineeringExtraction (chemistry)Charge (physics)02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesVacuum depositionMaterials ChemistryOptoelectronicsMOLIBDÊNIO0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Vacuum-Deposited Multication Tin-Lead Perovskite Solar Cells

2020

The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum co-deposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as on…

Materials scienceBand gapEnergy Engineering and Power TechnologyHalidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionVacuum depositionlawSolar cellMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Electrical and Electronic EngineeringMaterialsCèl·lules fotoelèctriquesPerovskite (structure)business.industryPhotovoltaic system021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopychemistryOptoelectronics0210 nano-technologybusinessTin
researchProduct

Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices

2021

The interaction between semiconductor materials and electromagnetic fields resonating in microcavities or the light-matter coupling is of both fundamental and practical significance for improving the performance of various photonic technologies. The demonstration of light-matter coupling effects in the emerging perovskite-based optoelectronic devices via optical pumping and electrical readout (e.g., photovoltaics) and vice versa (e.g., light-emitting diodes), however, is still scarce. Here, we demonstrate the microcavity formation in vacuum-deposited methylammonium lead iodide (CH3NH3PbI3, MAPI) p-i-n photovoltaic devices fabricated between two reflecting silver electrodes. We tune the posi…

Materials sciencebusiness.industrylight-matter couplingPhotovoltaic systemPhysics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsphotovoltaicmicrocavity devicehybrid organic inorganic perovskiteOptoelectronicsvacuum depositionElectrical and Electronic EngineeringbusinessMaterialsBiotechnologyPerovskite (structure)
researchProduct

Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition

2021

Vacuum deposition methods are increasingly applied to the preparation of perovskite films and devices, in view of the possibility to prepare multilayer structures at low temperature. Vacuum-deposited, wide-bandgap solar cells based on mixed-cation and mixed-anion perovskites have been scarcely reported, due to the challenges associated with the multiple-source processing of perovskite thin films. In this work, we describe a four-source vacuum deposition process to prepare wide-bandgap perovskites of the type FA1-n Cs n Pb(I1-x Br x )3 with a tunable bandgap and controlled morphology, using FAI, CsI, PbI2, and PbBr2 as the precursors. The simultaneous sublimation of PbI2 and PbBr2 allows the…

Materials scienceBand gapEnergy Engineering and Power TechnologyHalide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyVacuum depositionMaterials ChemistryThin filmCèl·lules fotoelèctriquesPerovskite (structure)Range (particle radiation)Renewable Energy Sustainability and the Environmentbusiness.industryConductivitat elèctrica021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyChemistry (miscellaneous)HomogeneousOptoelectronicsPhotovoltaics and Wind EnergySublimation (phase transition)0210 nano-technologybusinessACS Energy Letters
researchProduct

Simple approach for an electron extraction layer in all-vacuum processed n-i-p perovskite solar cell

2021

Vacuum processing is considered to be a promising method allowing the scalable fabrication of perovskite solar cells (PSCs). In vacuum processed PSCs, the n-i-p structure employing organic charge transport layers is less common than the p-i-n structure due to limited options to achieve an efficient electron extraction layer (EEL) on indium tin oxide (ITO) with vacuum thermal evaporation. There are a number of specific applications where an n-i-p structure is required and therefore, it is of interest to have alternative solutions for the n-type contact in vacuum processed PSCs. In this work, we report an efficient vacuum deposited EEL using a mixture of conventional organic small molecules, …

EnergiaCèl·lules fotoelèctriques
researchProduct

Radiative and non-radiative losses by voltage-dependent in-situ photoluminescence in perovskite solar cell current-voltage curves

2020

Abstract The rapid development of perovskite solar cells has been based on improvements in materials and device architectures, yet further progress towards their theoretical limit will require a detailed study of the main physical processes determining the photovoltaic performance. Luminescence can be a key parameter for this purpose, as it directly assesses radiative recombination. We present steady-state absolute photoluminescence of an operating device at varying voltages as a tool to study the loss mechanisms in perovskite devices. The calibration to absolute photon numbers gives access to the variation of the relative radiative/non-radiative recombination weighted along the measured po…

PhotoluminescenceMaterials scienceBiophysicsPerovskite solar cell02 engineering and technology010402 general chemistry01 natural sciencesBiochemistrylaw.inventionlawSolar cellRadiative transferSpontaneous emissionMaterialsCèl·lules fotoelèctriquesPerovskite (structure)business.industryPhotovoltaic systemGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Optics0104 chemical sciencesOptoelectronics0210 nano-technologybusinessVoltageJournal of Luminescence
researchProduct

Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA 1– x MA x PbI 3

2020

Preparation of black formamidinium lead iodide (FAPbI3) requires high temperature annealing and the incorporation of smaller A-site cations, such as methylammonium (MA+), cesium or rubidium. A major advantage of vacuum processing is the possibility to deposit perovskite films at room temperature (RT), without any annealing step. Here we demonstrate stabilization of the cubic perovskite phase at RT, in a three-sources co-sublimation method. We found that the MA+ incorporation is a self-limiting process, where the amount of MA+ which is incorporated in the perovskite is essentially unvaried with increasing MAI deposition rate. In this way a phase-pure, cubic perovskite with a bandgap of 1.53 …

Materials scienceAnnealing (metallurgy)virusesIodideInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyRubidiumMaterials ChemistryCèl·lules fotoelèctriqueschemistry.chemical_classificationRenewable Energy Sustainability and the EnvironmentConductivitat elèctrica021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyFormamidiniumchemistryChemistry (miscellaneous)Caesium0210 nano-technologyACS Energy Letters
researchProduct

Photovoltaic Devices Using Sublimed Methylammonium Lead Iodide Perovskites: Long‐Term Reproducible Processing

2023

Energy Engineering and Power TechnologyElectrical and Electronic EngineeringAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSolar RRL
researchProduct

Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells

2020

The recent sky-rocketing performance of perovskite solar cells has triggered a strong interest in further upgrading the fabrication techniques to meet the scalability requirements of the photovoltaic industry. The integration of vapor-deposition into the solution process in a sequential fashion can boost the uniformity and reproducibility of the perovskite solar cells. Besides, mixed-halide perovskites have exhibited outstanding crystallinity as well as higher stability compared with iodide-only perovskite. An extensive study was carried out to identify a reproducible process leading to highly crystalline perovskite films that when integrated into solar cells exhibited high power conversion…

FabricationMaterials scienceEnergy Engineering and Power TechnologyHalideComputerApplications_COMPUTERSINOTHERSYSTEMSNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyGeneralLiterature_MISCELLANEOUS0104 chemical sciencesMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic Engineering0210 nano-technologyMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Combinatorial Vacuum-Deposition of Wide Bandgap Perovskite Films and Solar Cells

2022

The development of vacuum-deposited perovskite materials and devices is partially slowed down by the minor research effort in this direction, due to the high cost of the required research tools. But there is also another factor, thermal co-deposition in high vacuum involves the simultaneous sublimation of several precursors with an overall deposition rate in the range of few Å s−1 . This leads to a deposition time of hours with only a single set of process parameters per batch, hence to a long timeframe to optimize even a single perovskite composition. Here we report the combinatorial vacuum deposition of wide bandgap perovskites using 4 sources and a non-rotating sample holder. By using sm…

Mechanics of MaterialsMechanical EngineeringMaterialsCèl·lules fotoelèctriques
researchProduct

Robust Lanthanoid Picolinate-Based Coordination Polymers for Luminescence and Sensing Applications

2021

Picolinate-based segmented dianionic ligands L12– (5-((4-carboxyphenyl)ethynyl)picolinate) and L22– (5,5′-(ethyne-1,2-diyl)dipicolinate) have been used in the synthesis of the highly robust and luminescent europium(III) coordination polymers [(CH3)2NH2][Eu(H2O)2(L1)2] (1) and [(CH3)2NH2][Eu(L2)2]·H2O·CH3COOH (2). Both 1 and 2 exhibit high selectivity for detection of nitroaromatic compounds since they act as quenchers of the Eu3+ emission. Stern–Volmer plots, using nitrobenzene as a quencher, yielded values of KSV = 150 M–1 and 160 M–1 for 1 and 2, respectively. Luminescence studies in the presence of different metal ions indicate a high selectivity for Fe3+ detection, with KSV values of 47…

chemistry.chemical_classificationLanthanideSensing applicationsMetal ions in aqueous solutionchemistry.chemical_elementPolymerArticleInorganic ChemistryNitrobenzenechemistry.chemical_compoundchemistryPhysical chemistryPhysical and Theoretical ChemistryLuminescenceEuropiumSelectivityInorganic Chemistry
researchProduct

Perovskite Solar Cells: Stable under Space Conditions

2020

Metal halide perovskite solar cells (PSCs) are of interest for high altitude and space applications due to their lightweight and versatile form factor. However, their resilience toward the particle spectrum encountered in space is still of concern. For space cells, the effect of these particles is condensed into an equivalent 1 MeV electron fluence. The effect of high doses of 1 MeV e-beam radiation up to an accumulated fluence to 10^16 e-cm-2 on methylammonium lead iodide perovskite thin films and solar cells is probed. By using substrate and encapsulation materials that are stable under the high energy e-beam radiation, its net effect on the perovskite film and solar cells can be studied.…

Espai exteriorMaterials scienceCondensed matter physicsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpace (mathematics)01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materials13. Climate actionElectrical and Electronic Engineering0210 nano-technologyCèl·lules fotoelèctriquesPerovskite (structure)Solar RRL
researchProduct

Room temperature vacuum-deposition of CsPbI2Br perovskite films from multiple-sources and mixed halide precursors

2020

Fully inorganic cesium lead halide perovskites, such as CsPbI2Br, show enhanced thermal stability compared to hybrid ones and are being widely investigated as wide bandgap absorbers for tandem applications. Despite their simple stoichiometry, the preparation of highly crystalline and stable cesium lead halide thin films is not trivial. In general, high-efficiency solar cells based on solution-processed CsPbI2Br thin films are prepared by hightemperature annealing or the use of chemical additives. In this work, we use solvent-free synthesis to investigate the formation of CsPbI2Br in bulk or in thin films via mechanochemical synthesis and multiple-source vacuum deposition, respectively. We d…

Materials scienceTandemBand gapGeneral Chemical EngineeringHalidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesVacuum depositionChemical engineeringchemistryCaesiumMaterials ChemistryThermal stability0210 nano-technologyMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Chemistry of Materials
researchProduct

CCDC 2068875: Experimental Crystal Structure Determination

2021

Related Article: Verónica Jornet-Mollá, Chris Dreessen, Francisco M. Romero|2021|Inorg.Chem.|60|10572|doi:10.1021/acs.inorgchem.1c01229

Space GroupCrystallographyCrystal Systemcatena-[dimethylammonium bis(mu-55'-(ethyne-12-diyl)bis(pyridine-2-carboxylato))-europium(iii) acetic acid solvate monohydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2068840: Experimental Crystal Structure Determination

2021

Related Article: Verónica Jornet-Mollá, Chris Dreessen, Francisco M. Romero|2021|Inorg.Chem.|60|10572|doi:10.1021/acs.inorgchem.1c01229

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[dimethylammonium bis(mu-5-[(4-(carboxylato)phenyl)ethynyl]pyridine-2-carboxylato)-diaqua-europium(iii)]Cell ParametersExperimental 3D Coordinates
researchProduct