6533b820fe1ef96bd127a3c4

RESEARCH PRODUCT

Stable Light-Emitting Electrochemical Cells Using Hyperbranched Polymer Electrolyte

Chris DreessenDaniel TorderaHenk J. BolinkLorenzo MardeganMichele Sessolo

subject

chemistry.chemical_classificationMaterials sciencePhotoluminescencePolymer electrolytesHyperbranched polymersPolymerElectrolyteElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionElectrochemical cellBiomaterialsElectroquímicaSolid-state lightingchemistryChemical engineeringlawElectrochemistryMaterials

description

The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed.

10.1002/adfm.202104249https://doi.org/10.1002/adfm.202104249