6533b829fe1ef96bd128ac08

RESEARCH PRODUCT

Design of single chain magnets through cyanide-bearing six-coordinate complexes

Miguel JulveCatalina Ruiz‐pérezFernando S. DelgadoRodrigue LescouëzecMichel VerdaguerJacqueline VaissermannLuminita Marilena TomaFrancesc Lloret

subject

DenticityLigandCyanideMetal ions in aqueous solutionInorganic chemistryCrystal structureInorganic ChemistryMetalchemistry.chemical_compoundCrystallographyHysteresischemistryvisual_artMaterials Chemistryvisual_art.visual_art_mediumPhysical and Theoretical ChemistryBimetallic strip

description

Abstract The design and preparation of stable cyanide-bearing six-coordinate complexes of formula [MIII(L)(CN)x](x + l − m)− (M = trivalent transition metal ion and L = polydentate blocking ligand) are summarized here. Their use as ligands towards either fully hydrated metal ions or coordinatively unsaturated preformed species, to afford a wide variety of low-dimensional metal assemblies whose nuclearity, dimensionality and magnetic properties can be tuned, is also reviewed. Special emphasis is put on the appropriate choice of the end-cap ligand L whose denticity determines the number of coordinated cyanide groups in the mononuclear precursors. Among the different new spin topologies obtained through this rational synthetic strategy, ferromagnetically coupled 4,2-ribbon like bimetallic chains which exhibit slow magnetic relaxation and hysteresis effects (chain as magnets) are one of the most appealing and constitute the heart of the present contribution.

https://doi.org/10.1016/j.ccr.2005.09.017