6533b829fe1ef96bd128adb2

RESEARCH PRODUCT

Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring

Gonçal Grau-muedraMirco BoschettiFrancesco NutiniFrancisco Javier García-haroAlberto CremaGustau Camps-vallsManuel Campos-taberner

subject

2. Zero hunger010504 meteorology & atmospheric sciencesMean squared error0211 other engineering and technologiesSoil ScienceGeologyInversion (meteorology)02 engineering and technologyCrop monitoring; Rice; Leaf area index (LAI) retrieval; PROSAIL; Smartphone; Gaussian process regression (GPR); Landsat; SPOT5 Take501 natural sciencesAtmospheric radiative transfer codesKrigingSatellite dataGround-penetrating radarEnvironmental scienceComputers in Earth SciencesLeaf area indexRice crop021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing

description

Abstract This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal evolution of the LAI estimates using Landsat and SPOT5 data followed consistently the temporal evolution of the in situ LAI measurements acquired on several Mediterranean rice varieties. The estimates had a root-mean-square-error (RMSE) of 0.39 and 0.51 m 2 /m 2 in Spain and 0.38 and 0.47 m 2 /m 2 in Italy for Landsat and SPOT5 respectively, with a strong correlation (R 2  > 0.92) for both cases. Spatial-temporal assessment of the estimated LAI from Landsat and SPOT5 data confirmed the robustness and consistency of the retrieval chain. This paper demonstrates the importance of an adequate characterization of the underlying rice background in order to address changes in background condition related to water management. Results highlight the potential of the proposed chain for deriving multitemporal near real-time decametric LAI maps fundamental for operational rice crop monitoring, and demonstrate the readiness of the proposed method for the processing of data such as the recently launched Sentinel-2.

10.1016/j.rse.2016.10.009http://dx.doi.org/10.1016/j.rse.2016.10.009