6533b82afe1ef96bd128b74b

RESEARCH PRODUCT

Jet quenching as a probe of the initial stages in heavy-ion collisions

Carlota AndresCarlos A. SalgadoHarri NiemiHarri NiemiNéstor ArmestoRisto PaatelainenRisto Paatelainen

subject

PB-PB COLLISIONSNuclear and High Energy Physicsnucl-thNuclear TheoryFLOWInitial stagesFlow (psychology)PREDICTIONSFOS: Physical scienceshiukkasfysiikkanucl-ex114 Physical sciences01 natural sciencesENERGYNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)heavy-ionsTRANSVERSE-MOMENTUM DEPENDENCE0103 physical sciencesNuclear Physics - ExperimentROOT-S(NN)=2.76 TEVNuclear Experiment (nucl-ex)010306 general physicsJet quenchingNuclear ExperimentNuclear ExperimentParticle Physics - PhenomenologyHeavy-ionsPhysicsThermal equilibriumJet (fluid)ionit010308 nuclear & particles physicsElliptic flowLEAD COLLISIONShep-phObservablelcsh:QC1-999initial stagesJet quenchingjet quenchingHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticleHeavy ionlcsh:Physics

description

Jet quenching provides a very flexible variety of observables which are sensitive to different energy- and time-scales of the strongly interacting matter created in heavy-ion collisions. Exploiting this versatility would make jet quenching an excellent chronometer of the yoctosecond structure of the evolution process. Here we show, for the first time, that a combination of jet quenching observables is sensitive to the initial stages of heavy-ion collisions, when the approach to local thermal equilibrium is expected to happen. Specifically, we find that in order to reproduce at the same time the inclusive particle production suppression, $R_{AA}$, and the high-$p_T$ azimuthal asymmetries, $v_2$, energy loss must be strongly suppressed for the first $\sim 0.6$ fm. This exploratory analysis shows the potential of jet observables, possibly more sophisticated than the ones studied here, to constrain the dynamics of the initial stages of the evolution.

10.1016/j.physletb.2020.135318http://www.sciencedirect.com/science/article/pii/S0370269320301222