6533b82afe1ef96bd128b866

RESEARCH PRODUCT

Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

Zhuoran GengJiawei LiYaolan TianMikko P. KonttinenSamuli HeiskanenIlari MaasiltaTero J. Isotalo

subject

Materials scienceAcoustics and UltrasonicsNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesphononic crystalthree-dimensional lithographyLithographyPhotonic crystalelectron-beam lithographyself-assemblyColloidal crystal021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsResistX-ray lithographycolloidal crystal0210 nano-technologyElectron-beam lithographyNext-generation lithographyMaskless lithographyphotonic crystalcross-linking

description

We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 degrees C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write three-dimensional laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned. Keywords: self-assembly, colloidal crystal, cross-linking, electron-beam lithography, three-dimensional lithography, phononic crystal, photonic crystal. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201710244055