6533b82afe1ef96bd128b9c7

RESEARCH PRODUCT

A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses

Rebecca K. LeaneDan HooperDan HooperYu-dai TsaiShalma WegsmanSamuel J. Witte

subject

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsCosmology of Theories beyond the SMGalaxyUniverseDwarf spheroidal galaxyHidden sectorHigh Energy Physics - PhenomenologyAntiprotonBeyond Standard Modellcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics

description

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter's elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.

10.1007/jhep07(2020)163http://hdl.handle.net/10261/221795