0000000000236948

AUTHOR

Dan Hooper

showing 8 related works from this author

Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess

2016

Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling to Standard Model fermions. All scenarios in w…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Large Hadron ColliderAnnihilation010308 nuclear & particles physicsPhysics beyond the Standard ModelDark matterGalactic CenterFOS: Physical sciencesAstronomy and AstrophysicsFermion01 natural sciencesStandard ModelPseudoscalarHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics - High Energy Astrophysical Phenomena010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe

2020

It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves,…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)reheatingmedia_common.quotation_subjectnucleosynthesis: big bangDark matterFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologydark matterGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesenergy: density010306 general physicsmedia_commonInflation (cosmology)Physics010308 nuclear & particles physicsGravitational wave[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]gravitational radiationAstronomyUniverseinflation: modelBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]history[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]black hole: primordialasymmetryAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses

2020

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly class…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsCosmology of Theories beyond the SMGalaxyUniverseDwarf spheroidal galaxyHidden sectorHigh Energy Physics - PhenomenologyAntiprotonBeyond Standard Modellcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology with a very light Lμ − Lτ gauge boson

2019

In this paper, we explore in detail the cosmological implications of an abelian L − L gauge extension of the Standard Model featuring a light and weakly coupled Z′. Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured and predicted values of the muon’s anomalous magnetic moment, (g − 2) , as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z′ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significa…

Nuclear and High Energy PhysicsParticle physicscosmological modelZ': couplingPopulationNeutrino decoupling01 natural sciences7. Clean energygauge boson: abeliansymbols.namesakeradiation: density0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityenergy: densityNeutrino Physics010306 general physicseducationPhysicsGauge bosoneducation.field_of_studyMuonHubble constantAnomalous magnetic dipole momentspace-time: expansionmuon: magnetic moment010308 nuclear & particles physicsCoupling (probability)Cosmology of Theories beyond the SMHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard Modelsymbolslcsh:QC770-798Neutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]neutrino: decouplingAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of High Energy Physics
researchProduct

Summary of Working Group 4: High Energy Neutrino Telescopes

2007

The field of high-energy neutrino astronomy is rapidly developing. A number of new experiments are currently being deployed and developed. Additionally, the recent successes of TeV gamma-ray astronomy have exciting implications for future neutrino telescopes. Here we will summarize these and other issues as they were discussed in the TeV II workshop's neutrino astronomy working group.

PhysicsHistoryHigh energyHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstrophysicsSolar neutrino problemComputer Science ApplicationsEducationNeutrino detectorHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyLeptonJournal of Physics: Conference Series
researchProduct

Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look

2017

Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parame…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsHyperchargeCosmology and Nongalactic Astrophysics (astro-ph.CO)Large Hadron Collider010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)01 natural sciencesStandard ModelHidden sectorHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Antiproton0103 physical sciencesHiggs bosonAstrophysics - High Energy Astrophysical Phenomena010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Toward (finally!) ruling out Z and Higgs mediated dark matter models

2016

In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model $Z$ or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of $Z$ mediated dark matter, the only scenari…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard Modelmedia_common.quotation_subjectDark matterScalar (mathematics)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsUniversePseudoscalarHigh Energy Physics - PhenomenologyHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Probing Planck scale physics with IceCube

2005

Neutrino oscillations can be affected by decoherence induced e.g. by Planck scale suppressed interactions with the space-time foam predicted in some approaches to quantum gravity. We study the prospects for observing such effects at IceCube, using the likely flux of TeV antineutrinos from the Cygnus spiral arm. We formulate the statistical analysis for evaluating the sensitivity to quantum decoherence in the presence of the background from atmospheric neutrinos, as well as from plausible cosmic neutrino sources. We demonstrate that IceCube will improve the sensitivity to decoherence effects of ${\cal O}(E^2/M_{\rm Pl})$ by 17 orders of magnitude over present limits and, moreover, that it ca…

High Energy Physics - TheoryAstrofísicaNuclear and High Energy PhysicsParticle physicsField theory (Physics)Quantum decoherenceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTeoria quànticaNeutrinsSensitivity (control systems)Neutrinos010306 general physicsNeutrino oscillationPhysicsCOSMIC cancer database010308 nuclear & particles physicsAstrophysics (astro-ph)Teoria de camps (Física)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Orders of magnitude (time)13. Climate actionQuantum theoryQuantum gravityNeutrinoPhysical Review D
researchProduct