6533b82afe1ef96bd128b9e6
RESEARCH PRODUCT
Acoustic wave guides as infinite-dimensional dynamical systems
Jarmo MalinenAtte AaltoTeemu Lukkarisubject
regularityControl and OptimizationDynamical systems theoryWave propagationwave propagationDynamical Systems (math.DS)Curvaturelaw.inventionMathematics - Analysis of PDEslawWebster’s horn modelFOS: MathematicspassivityMathematics - Dynamical SystemsMathematicstubular domainMathematical modelta111Mathematical analysisAcoustic waveDissipationWave equationPrimary 35L05 secondary 35L20 93C20 47N70Computational MathematicsControl and Systems Engineering: Mathematics [G03] [Physical chemical mathematical & earth Sciences]wave equation: Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre]WaveguideAnalysis of PDEs (math.AP)description
We prove the unique solvability, passivity/conservativity and some regularity results of two mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of finite length. The first of the models is the generalised Webster's model that includes dissipation and curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave equation on 3D waveguides. The two models are treated in an unified fashion so that the results on the wave equation reduce to the corresponding results of approximating Webster's model at the limit of vanishing waveguide intersection.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 | ESAIM: Control, Optimisation and Calculus of Variations |