6533b82afe1ef96bd128ba77

RESEARCH PRODUCT

Microwave-induced coupling of superconducting qubits

Gheorghe Sorin Paraoanu

subject

PhysicsQuantum PhysicsQuantum networkCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Quantum technologyComputer Science::Emerging TechnologiesQuantum gateQuantum error correctionQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionW stateQuantum Physics (quant-ph)Superconducting quantum computingComputer Science::DatabasesTrapped ion quantum computer

description

We investigate the quantum dynamics of a system of two coupled superconducting qubits under microwave irradiation. We find that, with the qubits operated at the charge co-degeneracy point, the quantum evolution of the system can be described by a new effective Hamiltonian which has the form of two coupled qubits with tunable coupling between them. This Hamiltonian can be used for experimental tests on macroscopic entanglement and for implementing quantum gates.

https://doi.org/10.1103/physrevb.74.140504