6533b82afe1ef96bd128c2c2

RESEARCH PRODUCT

Chromatin organization regulates viral egress dynamics.

Elina MäntyläMarkko MyllysKeijo MattilaKeijo MattilaJussi TimonenJussi TimonenVisa RuokolainenCarolyn A. LarabellCarolyn A. LarabellSatu HakanenThomas KühnThomas KühnVesa AhoJori VirtanenMaija Vihinen-rantaVeijo Hukkanen

subject

0301 basic medicineX-RAY TOMOGRAPHYvirusesmedicine.disease_cause2.2 Factors relating to physical environmentHistoneschemistry.chemical_compoundMiceINFECTION2.2 Factors relating to the physical environmentREPLICATION COMPARTMENTSAetiologyVirus ReleaseMicroscopyMultidisciplinaryMicroscopy ConfocalQRMICROSCOPYChromatin3. Good healthChromatinCell biologyTIMEOther Physical Sciencesmedicine.anatomical_structureInfectious DiseasesCapsidConfocalMedicineFemaleInfectionVESICLE FORMATIONNUCLEAR ARCHITECTUREHeterochromatinScienceBiology114 Physical sciencesArticleCell Line03 medical and health sciencesmedicineHerpes virusAnimalsCellular microbiologyNuclear export signalcell chromatinCell NucleusHERPES-SIMPLEX-VIRUSBiological TransportVirology030104 developmental biologyHerpes simplex viruschemistryViral replicationCELLS1182 Biochemistry cell and molecular biologyBiochemistry and Cell BiologyDNA virusesNucleusDNABiomarkersHISTONE MODIFICATIONSVirus Physiological Phenomena

description

Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.

10.1038/s41598-017-03630-yhttps://pubmed.ncbi.nlm.nih.gov/28623258