6533b82afe1ef96bd128c54a

RESEARCH PRODUCT

gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model

Joel KostensaloJouni Suhonen

subject

spektritnuclear shell modelelektronitydinfysiikka

description

The evolution of the shape of the electron spectra of 16 forbidden β− decays as a function of gA was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The β spectra of 94Nb(6+)→94Mo(4+) and 98Tc(6+)→98Ru(4+) were found to depend strongly on gA, which makes them excellent candidates for the determination of the effective value of gA with the spectrum-shape method (SSM). A strong gA dependence is also seen in the spectrum of 96Zr(0+)→96Nb(6+). This decay could be used for determining the quenching of gA in sixth-forbidden decays in the future, when the measurement of the spectrum becomes experimentally feasible. The calculated shell-model electron spectra of the ground-state-to-ground-state decays of 87Rb, 99Tc, and 137Cs and the decay of 137Cs to the isomeric 11/2− state in 137Ba were found to be in excellent agreement with the spectra previously calculated using the microscopic quasiparticle-phonon model. This is further evidence of the robust nature of the SSM observed in the previous studies. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201709013643