6533b82afe1ef96bd128cc04

RESEARCH PRODUCT

Laboratory measurements and astronomical search for the HSO radical

Cristina PuzzariniTill KirschJosé CernicharoBelén TerceroGabriele CazzoliJürgen GaussValerio Lattanzi

subject

inorganic chemicalsMethods: laboratory: molecularHydrogenLine: identificationlaboratory: molecular [Methods]chemistry.chemical_elementContext (language use)ISM: moleculeAstrophysics7. Clean energy01 natural sciencesArticleAbundance (ecology)0103 physical sciencesPhysics::Chemical Physicsidentification [Line]Spectral resolutionSubmillimeter: ISM010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmolecules [ISM]Radio lines: ISMPhysics010304 chemical physicsMolecular dataTriatomic moleculeISM [Submillimeter]AstronomyAstronomy and AstrophysicsAstronomy and AstrophysicSulfurDiatomic moleculeISM: moleculesISM [Radio lines]Interstellar mediumchemistry13. Climate actionSpace and Planetary Science

description

[Context] Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium. The chemical form of the missing sulfur has yet to be identified.

https://doi.org/10.1051/0004-6361/201628745