0000000000018663
AUTHOR
Valerio Lattanzi
Die Bindungsverhältnisse in schweren Analoga des Cyanwasserstoffs: der merkwürdige Fall des HPSi
ChemInform Abstract: Cyclic SiS2: A New Perspective on the Walsh Rules.
Cyclic SiS2 is detected in the low-current dc discharge products of a mixture of SiH4 and H2S by Fourier transform microwave spectroscopy.
Cyclic SiS2: a new perspective on the Walsh rules.
Cyclisches SiS2 - die Walsh-Regeln in neuem Licht
Laboratory measurements and astronomical search for the HSO radical
[Context] Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium. The chemical form of the missing sulfur has yet to be identified.
Bonding in the heavy analogue of hydrogen cyanide: the curious case of bridged HPSi.
The bonding of firstand second-row elements differ dramatically. The simplest unsaturated silicon hydrides Si2H2 and Si2H4 exhibit quite unusual geometries [1] compared to the analogous hydrocarbon molecules. For example, the most stable form of Si2H2 is nonplanar with C2v symmetry and two bridging H atoms, in sharp contrast to linear acetylene, HC! CH. Phosphorus and nitrogen share many of the same bonding characteristics, but P prefers single over multiple bonds. For these reasons, it may be difficult to predict the most stable isomeric arrangement, even for a small molecule with a single Por Si atom and especially when it contains both. Silicon–phosphorus bonds are important in materials…
Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 A and rSi-S = 1.9133 A) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected fi…
THE HYPERFINE STRUCTURE of the ROTATIONAL SPECTRUM of HDO and ITS EXTENSION to the THz REGION: ACCURATE REST FREQUENCIES and SPECTROSCOPIC PARAMETERS for ASTROPHYSICAL OBSERVATIONS
The rotational spectrum of the mono-deuterated isotopologue of water, HD16O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available s…
Spectroscopic Detection and Structure of Hydroxidooxidosulfur (HOSO) Radical, An Important Intermediate in the Chemistry of Sulfur-Bearing Compounds
The rotational spectrum of hydroxidooxidosulfur, HOSO, an intermediate of particular interest in the combustion of sulfur-rich fuels, has been determined to high accuracy from gas-phase measurements. Detection of specific isotopic species using isotopically enriched gases suggests that HOSO is formed in our discharge nozzle via the reaction H + SO2 (+M) → HOSO (+M). A precise experimental r0 geometry has also been derived from the isotopic analysis; HOSO has a cis configuration, but the subtle structural question of its planarity remains unresolved. From the derived spectroscopic constants, in situ and remote sensing for this fundamental radical can now be undertaken in a variety of environ…
Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions
[Context] Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN.