6533b82bfe1ef96bd128cd01
RESEARCH PRODUCT
On the proper homotopy invariance of the Tucker property
Daniele Ettore Oterasubject
Fundamental groupHomotopy lifting propertyApplied MathematicsGeneral MathematicsHomotopyMathematics::Optimization and ControlhomotopyproperComputer Science::Numerical AnalysisRegular homotopyCombinatoricsn-connectedPolyhedronEquivalence relationtucker propertySimplicial mapMathematicsdescription
A non-compact polyhedron P is Tucker if, for any compact subset K ⊂ P, the fundamental group π1(P − K) is finitely generated. The main result of this note is that a manifold which is proper homotopy equivalent to a Tucker polyhedron is Tucker. We use Poenaru’s theory of the equivalence relations forced by the singularities of a non-degenerate simplicial map.
year | journal | country | edition | language |
---|---|---|---|---|
2006-12-12 |