6533b82bfe1ef96bd128cd01

RESEARCH PRODUCT

On the proper homotopy invariance of the Tucker property

Daniele Ettore Otera

subject

Fundamental groupHomotopy lifting propertyApplied MathematicsGeneral MathematicsHomotopyMathematics::Optimization and ControlhomotopyproperComputer Science::Numerical AnalysisRegular homotopyCombinatoricsn-connectedPolyhedronEquivalence relationtucker propertySimplicial mapMathematics

description

A non-compact polyhedron P is Tucker if, for any compact subset K ⊂ P, the fundamental group π1(P − K) is finitely generated. The main result of this note is that a manifold which is proper homotopy equivalent to a Tucker polyhedron is Tucker. We use Poenaru’s theory of the equivalence relations forced by the singularities of a non-degenerate simplicial map.

10.1007/s10114-005-0900-2http://hdl.handle.net/10447/23680