6533b82bfe1ef96bd128cd78

RESEARCH PRODUCT

Lambda-doublet specificity in the low-temperature capture of NO(X Π21/2) in low rotational states by C+ ions

J. TroeMarcis AuzinshI. LitvinE. I. DashevskayaE. E. Nikitin

subject

IonsRotationElectron captureChemistryGeneral Physics and AstronomyAtmospheric temperature rangeNitric OxideLambdaCarbonIonCold TemperatureKineticsDipolesymbols.namesakeStark effectsymbolsPhysical and Theoretical ChemistryAtomic physicsAdiabatic processHyperfine structure

description

Following our general approach to Lambda-doubling specificity in the capture of dipolar molecules by ions [M. Auzinsh et al., J. Chem. Phys. 128, 184304 (2008)], we calculate the rate coefficients for the title process in the temperature range 10(-4)<T<10(2) K. Three regimes considered are as follows: (i) nonadiabatic capture in the regime of high-field Stark effect with respect to the Lambda-doubling components, (10(-1)<T<10(2) K), (ii) adiabatic capture in the regime of intermediate Stark effect (10(-3)<T<10(-1) K), and (iii) adiabatic capture in the limit of very low temperatures (T<<10(-3) K) in the regime of quadratic Stark effect with respect to the Lambda-doubling and hyperfine components. The results predict a high specificity of the capture rates with respect to the Lambda-doublet states even under conditions when the collision energy of the partners strongly exceeds the Lambda-doubling splitting.

https://doi.org/10.1063/1.3043365