6533b82bfe1ef96bd128ce38
RESEARCH PRODUCT
Polarization modulation instability in a Manakov fiber system
Fabio BaronioStefan WabnitzPhilippe MorinGuy MillotBenoit FrisquetMatteo ConfortiJulien FatomeBertrand Kiblersubject
Optical fiberPhysics::OpticsContext (language use)02 engineering and technology01 natural sciencesWaveguide (optics)law.invention020210 optoelectronics & photonics[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]law0103 physical sciences0202 electrical engineering electronic engineering information engineeringrandomly varying birefringence; cross-phase modulation; optical-fibers; normal-dispersion; copropagating frequencies; Schrodinger-equations; WDM transmission; rogue waves; generation; solitonRogue wave010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsPhysicsRandomly varying birefringence[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear opticsAtomic and Molecular Physics and Opticsoptical-fibersNonlinear systemClassical mechanicsNonlinear Sciences::Exactly Solvable and Integrable Systemscross-phase modulationManakov systemRandomly varying birefringence; cross-phase modulation; optical-fibersSolitondescription
International audience; The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in 1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than soliton formation. Here, we report experiments in optical fiber that provide evidence of passband and baseband polarization modulation instabilities in a defocusing Manakov system. In the spontaneous regime, we also reveal a unique saturation effect as the pump power increases. We anticipate that such observations may impact the application of this minimal model to describe and understand more complicated phenomena in nature, such as the formation of extreme waves in multicomponent systems.
year | journal | country | edition | language |
---|---|---|---|---|
2015-11-01 |