6533b82bfe1ef96bd128cede

RESEARCH PRODUCT

Revisiting cosmological bounds on sterile neutrinos

Pilar HernándezAaron C. VincentAaron C. VincentEnrique Fernandez MartinezOlga MenaMassimiliano Lattanzi

subject

Sterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesNeutrino decouplingAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaAstronomy and Astrophysicshep-phUniverseHigh Energy Physics - Phenomenology13. Climate actionsymbolsastro-ph.COHigh Energy Physics::ExperimentBaryon acoustic oscillationsNeutrinoHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics

description

We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter $R_{CMB}$ and the sound horizon $r_s$ from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint $\sin^2\theta \lesssim 0.026 (m_s/\mathrm{eV})^{-2}$.

https://dx.doi.org/10.48550/arxiv.1408.1956