0000000000025513

AUTHOR

Massimiliano Lattanzi

0000-0003-1059-2532

Impact of neutrino properties on the estimation of inflationary parameters from current and future observations

We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the $n_s/r$ plane. We study the following neutrino properties: (i) the total neutrino mass $ M_\nu =\sum_i m_i$; (ii) the number of relativistic degrees of freedom $N_{eff}$; and (iii) the neutrino hierarchy: whereas previous literature assumed 3 degenerate neutrino masses or two massless neutrino species (that do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce $< 1 \sigma$ shift of the probability contours in…

research product

Updated CMB and x- and gamma-ray constraints on Majoron dark matter

The Majoron provides an attractive dark matter candidate, directly associated with the mechanism responsible for spontaneous neutrino mass generation within the standard model SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) framework. Here we update the cosmological and astrophysical constraints on Majoron dark matter coming from the cosmic microwave background and a variety of x- and gamma-ray observations.

research product

Harrison-Zel'dovich primordial spectrum is consistent with observations

Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity (the Harrison--Zel'dovich (HZ) spectrum). The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c.l.. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.

research product

Cosmic microwave background constraints on secret interactions among sterile neutrinos

Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson $X$ (with $M_X \ll M_W$), and characterized by a gauge coupling $g_X$, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking i…

research product

Revisiting cosmological bounds on sterile neutrinos

We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutri…

research product

Impact of general reionization scenarios on extraction of inflationary parameters

Determination of whether the Harrison-Zel'dovich spectrum for primordial scalar perturbations is consistent with observations is sensitive to assumptions about the reionization scenario. In light of this result, we revisit constraints on inflationary models using more general reionization scenarios. While the bounds on the tensor-to-scalar ratio are largely unmodified, when different reionization schemes are addressed, hybrid models are back into the inflationary game. In the general reionization picture, we reconstruct both the shape and amplitude of the inflaton potential. We discuss how relaxing the simple reionization restriction affects the reconstruction of the potential through the c…

research product

Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy

Using some of the latest cosmological datasets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, $M_\nu$, within the assumption of a background flat $\Lambda$CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background (CMB) temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization ($\tau$), the tightest $95\%$ confidence level (C.L.) upper bound we find is $M_\nu0.06\,{\rm eV}$ from oscillations data would raise the quoted upper bounds by ${\cal O}(0.1\sigma)$ and would not affect our conclusions.

research product

Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data

Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterised via $N_{eff}$. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measure…

research product

X-ray photons from late-decaying majoron dark matter

An attractive way to generate neutrino masses as required to account for current neutrino oscillation data involves the spontaneous breaking of lepton number. The resulting majoron may pick up a mass due to gravity. If its mass lies in the kilovolt scale, the majoron can play the role of late-decaying Dark Matter (LDDM), decaying mainly to neutrinos. In general the majoron has also a sub-dominant decay to two photons leading to a mono-energetic emission line which can be used as a test of the LDDM scenario. We compare expected photon emission rates with observations in order to obtain model independent restrictions on the relevant parameters. We also illustrate the resulting sensitivities w…

research product

Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches

We provide a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, $\beta$-decay and neutrinoless double-$\beta$ decay ($0\nu\beta\beta$) experiments. We directly constrain the full $3+1$ active-sterile mixing matrix elements $|U_{\alpha4}|^2$, with $\alpha \in ( e,\mu ,\tau )$, and the mass-squared splitting $\Delta m^2_{41} \equiv m_4^2-m_1^2$. We find that results for a $3+1$ case differ from previously studied $1+1$ scenarios where the sterile is only coupled to one of the neutrinos, which is largely explained by parameter space …

research product

Connecting neutrino physics with dark matter

The origin of neutrino masses and the nature of dark matter are two of the most pressing open questions of the modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the see-saw mechanism, like in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter o…

research product

Axion cold dark matter: Status after Planck and BICEP2

We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon Acoustic Oscillation data, including those from the Baryon Oscillation Spectroscopic Survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario, the full dataset implies that the axion mass m_a = 82.2 pm 1.1 {\mu}eV (corresponding to the Peccei-Quinn symmetry being broken at a scale f_a = (7.54 pm 0.10)*10^10 GeV), or m_a = 76.6 …

research product

Decaying warm dark matter and neutrino masses

Neutrino masses may arise from spontaneous breaking of ungauged lepton number. Due to quantum gravity effects the associated Goldstone boson - the majoron - will pick up a mass. We determine the lifetime and mass required by cosmic microwave background observations so that the massive majoron provides the observed dark matter of the Universe. The majoron DDM scenario fits nicely in models where neutrino masses arise a la seesaw, and may lead to other possible cosmological implications.

research product

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

research product

Relic neutrinos, thermal axions, and cosmology in early 2014

We present up to date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise Baryon Acoustic Oscillation (BAO) measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three active neutrino scenario, we find Sum m_nu &lt; 0.22 eV at 95% CL from the combination of CMB, BAO and Hubble Space Telescope measurements of the Hubble constant. A non zero value for the sum of the three active neutrino masses of about …

research product

Model independent constraints on mass-varying neutrino scenarios

Models of dark energy in which neutrinos interact with the scalar field supposed to be responsible for the acceleration of the Universe usually imply a variation of the neutrino masses on cosmological time scales. In this work we propose a parametrization for the neutrino mass variation that captures the essentials of those scenarios and allows one to constrain them in a model independent way, that is, without resorting to any particular scalar field model. Using WMAP 5 yr data combined with the matter power spectrum of SDSS and 2dFGRS, the limit on the present value of the neutrino mass is m(0) equivalent to m(nu)(z = 0) 0), totally consistent with no mass variation. These stringent bounds…

research product

Bounds on very low reheating scenarios after Planck

9 pages.- 9 figures

research product

A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

We present a novel approach to derive constraints on neutrino masses from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current and future cosmological datasets on the total neutrino mass $M_\nu$ and on the mass fractions carried by each of the mass eigenstates, after marginalizing over the (unknown) neutrino mass ordering, either normal (NH) or inverted (IH). The bounds take therefore into account the uncertainty related to our ignorance of the mass hierarchy. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem. In this context, the choice of the ne…

research product