6533b82bfe1ef96bd128d6dc

RESEARCH PRODUCT

Optimizing the SYBR green related cyanine dye structure to aim for brighter nucleic acid visualization

Johanna M. AlarantaKhai-nghi TruongMaría Francisca MatusSami A. MalolaKari RissanenSailee S. ShroffVarpu S. MarjomäkiHannu J. HäkkinenTanja Lahtinen

subject

kemiallinen synteesiväriaineetProcess Chemistry and TechnologyGeneral Chemical Engineeringtiheysfunktionaaliteoriafluoresenssinukleiinihapotmolecular dockingcyanine dyeX-ray crystal structureDFT calculationstestausbiomolekyylitnucleic acidfluorescent probesyaniiniväriaineetröntgenkristallografia

description

In recent years, the studies of RNA and its use for the development of RNA based vaccines have increased drastically. Although cyanine dyes are commonly used probes for studying nucleic acids, in a wide range of applications, there is still a growing need for better and brighter dyes. To meet this demand, we have systematically studied the structure of SYBR green-related cyanine dyes to gain a deeper understanding of their interactions with biomolecules especially how they interact with nucleic acids and the structural components which makes them strongly fluorescent. Herein, five new dyes were synthesized, and their photophysical properties were evaluated. Observations of photophysical characteristics were compared to calculations by using density functional theory in its ground state and time-dependent form to model the optical absorption spectra and excited state properties of the selected molecules. Single crystal X-ray crystal structures of five cyanine dyes were determined and the interactions of the cyanine dye-DNA complex were studied by using molecular docking and molecular dynamics calculations. Three molecular structural features were discovered: a) removing the benzene ring from the thiazolium moiety of the dye lowers the fluorescence drastically, and that the quantum yield can be enhanced, therefore increasing the fluorescence, by b) incorporating methanethiol substituent at the quinoline moiety instead of dimethylamine or c) changing the thiazolium moiety to an oxazolium moiety. peerReviewed

https://doi.org/10.1016/j.dyepig.2022.110844