6533b82bfe1ef96bd128d854

RESEARCH PRODUCT

New concept in bioderived composites: Biochar as toughening agent for improving performances and durability of agave-based epoxy biocomposites

Antonio PantanoMattia BartoliF BongiornoCarmelo MilitelloAlberto TagliaferroBernardo Zuccarello

subject

Materials sciencePolymers and PlasticsCompression molding02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesArticlelcsh:QD241-441Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinelcsh:Organic chemistryAgaveThermoset compositesFiller (materials)Ultimate tensile strengthBiocharFiberComposite materialFatigueagave; biochar; thermoset composites; fatigueGeneral ChemistryEpoxy021001 nanoscience & nanotechnologyDurability0104 chemical sciencesBiocharvisual_artengineeringvisual_art.visual_art_mediumBiocomposite0210 nano-technology

description

Biocomposites are increasingly used in the industry for the replacement of synthetic materials, thanks to their good mechanical properties, being lightweight, and having low cost. Unfortunately, in several potential fields of structural application their static strength and fatigue life are not high enough. For this reason, several chemical treatments on the fibers have been proposed in literature, although still without fully satisfactory results. To overcome this drawback, in this study we present a procedure based on the addition of a carbonaceous filler to a green epoxy matrix reinforced by Agave sisalana fibers. Among all carbon-based materials, biochar was selected for its environmental friendliness, along with its ability to improve the mechanical properties of polymers. Different percentages of biochar, 1, 2, and 4 wt %, were finely dispersed into the resin using a mixer and a sonicator, then a compression molding process coupled with an optimized thermomechanical cure process was used to produce a short fiber biocomposite with Vf = 35%. Systematic experimental tests have shown that the presence of biochar, in the amount 2 wt %, has significant effects on the matrix and fiber interphase, and leads to an increase of up to three orders of magnitude in the fatigue life, together with an appreciable improvement in static tensile strength.

10.3390/polym13020198http://hdl.handle.net/10447/468438