6533b82bfe1ef96bd128e136

RESEARCH PRODUCT

Regulation of ribonucleotide reductase in response to iron deficiency

Nerea SanvisensNerea SanvisensM. Carmen BañóSergi PuigMingxia Huang

subject

CytoplasmSaccharomyces cerevisiae ProteinsDeoxyribonucleoside triphosphateRibonucleoside Diphosphate ReductaseRNA StabilityProtein subunitSaccharomyces cerevisiaeCell Cycle ProteinsSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiologyResponse ElementsArticleTristetraprolinGene Expression Regulation FungalRibonucleotide ReductasesHumansRNA MessengerMolecular BiologyTranscription factorCell NucleusDNA synthesisIntracellular Signaling Peptides and ProteinsFungal geneticsRNA-Binding ProteinsRNA FungalIron DeficienciesCell Biologybiology.organism_classificationDNA-Binding ProteinsRepressor ProteinsCheckpoint Kinase 2Protein SubunitsProtein TransportRibonucleotide reductaseBiochemistryCytoplasmTranscription Factors

description

Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2–Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity, and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the redistribution of the Rnr2–Rnr4 heterodimer to the cytoplasm, where it assembles as an active RNR complex and increases deoxyribonucleoside triphosphate levels. When iron is scarce, yeast selectively optimizes RNR function at the expense of other non-essential iron-dependent processes that are repressed, to allow DNA synthesis and repair.

10.1016/j.molcel.2011.09.021https://europepmc.org/articles/PMC3240860/