0000000000148794

AUTHOR

M. Carmen Bañó

Membrane topology and post-translational modification of the Saccharomyces cerevisiae essential protein Rot1.

ROT1 is an essential gene that has been related to cell wall biosynthesis, the actin cytoskeleton and protein folding. In order to help to understand its molecular function, we carried out a characterization of the Rot1 protein. It is primarily located at the endoplasmic reticulum-nuclear membrane facing the lumen. Rot1 migrates more slowly than expected, which might suggest post-translational modification. Our results indicate that Rot1 is a protein that is neither GPI-anchored nor O-glycosylated. In contrast, it is N-glycosylated. By a directed mutagenesis of several Asn residues, we identified that the protein is simultaneously glycosylated at N103, N107 and N139. Although the mutation o…

research product

Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma

ABSTRACTCutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although most cSCCs have good prognosis, a subgroup of high-risk cSCC has a higher frequency of recurrence and mortality. Therefore, the identification of molecular risk factors associated with this aggressive subtype is of major interest. In this work we carried out a global-scale approach to investigate the DNA-methylation profile in patients at different stages, from premalignant actinic keratosis to low-risk invasive and high-risk non-metastatic and metastatic cSCC. The results showed massive non-sequential changes in DNA-methylome and identified a minimal methylation signature that discriminates bet…

research product

Size-Exclusion Chromatographic Determination of Polymer Molar Mass Averages Using a Fractal Calibration

The characterization of polymers by size-exclusion chromatography basically consists of the determination of the weight-average molar mass (Mw), number-average molar mass (Mn), and polydispersity index (I). An accurate estimation of these magnitudes requires the use of a reliable and trusted calibration curve. Three procedures for building up a calibration curve are analyzed in this work. The first is the classical universal calibration (UC), based on the elution of tetrahydrofuran-polystyrene in a system as reference. The second is based on the proper calibration curve made with standards of the sample under study. However, two main drawbacks arise when using these methodologies: the nonfu…

research product

Whi7 is an unstable cell-cycle repressor of the Start transcriptional program

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a ge…

research product

Rot1 plays an antagonistic role to Clb2 in actin cytoskeleton dynamics throughout the cell cycle.

ROT1 is an essential gene whose inactivation causes defects in cell cycle progression and morphogenesis in budding yeast. Rot1 affects the actin cytoskeleton during the cell cycle at two levels. First, it is required for the maintenance of apical growth during bud growth. Second, Rot1 is necessary to polarize actin cytoskeleton to the neck region at the end of mitosis; because of this defect, rot1 cells do not properly form a septum to complete cell division. The inability to polarize the actin cytoskeleton at the end of mitosis is not due to a defect in the recruitment of the polarisome scaffold protein Spa2 or the actin cytoskeleton regulators Cdc42 and Cdc24 in the neck region. Previous …

research product

The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints) mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK) cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses.…

research product

HPLC in the characterisation of conformational species of linear gramicidins

Abstract High-performance size-exclusion chromatography (HPSEC) has proved to be a highly simplified and rapid procedure to investigate the conformational behaviour of gramicidin A inserted in different model membrane systems (lipid dispersions, liposomes, micelles) based on the separation of double-stranded dimers and monomers present in the lipid assemblies. The HPSEC approach has been extended to the characterisation of acylated analogs of gramicidin (palmitoyl- and oleoyl-derivatives) and a series of peptide analogs where tryptophan residues were chemically modified or replaced by less polar residues (phenylalanine or naphtylalanine) lacking H-bonding ability. The Chromatographic result…

research product

Regulation of ribonucleotide reductase in response to iron deficiency

Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2–Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity, and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the re…

research product

Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Inhibitor Sml1 in Response to Iron Deficiency

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar pr…

research product

Inhibition of cancer growth by resveratrol is related to its low bioavailability.

The relationship between resveratrol (RES) bioavalability and its effect on tumor growth was investigated. Tissue levels of RES were studied after i.v. and oral administration of trans-resveratrol (t-RES) to rabbits, rats, and mice. Half-life of RES in plasma, after i.v. administration of 20 mg t-RES/kg b.wt., was very short (e.g., 14.4 min in rabbits). The highest concentration of RES in plasma, either after i.v. or oral administration (e.g., 2.6 +/- 1.0 microM in mice 2.5 min after receiving 20 mg t-RES/kg orally), was reached within the first 5 min in all animals studied. Extravascular levels (brain, lung, liver, and kidney) of RES, which paralleled those in plasma, were always1 nmol/g f…

research product

Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase

The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly,…

research product

The yeast Aft1 transcription factor activates ribonucleotide reductase catalytic subunit RNR1 in response to iron deficiency

Eukaryotic ribonucleotide reductases are iron-dependent enzymes that catalyze the rate-limiting step in the de novo synthesis of deoxyribonucleotides. Multiple mechanisms regulate the activity of ribonucleotide reductases in response to genotoxic stresses and iron deficiency. Upon iron starvation, the Saccharomyces cerevisiae Aft1 transcription factor specifically binds to iron-responsive cis elements within the promoter of a group of genes, known as the iron regulon, activating their transcription. Members of the iron regulon participate in iron acquisition, mobilization and recycling, and trigger a genome-wide metabolic remodeling of iron-dependent pathways. Here, we describe a mechanism …

research product

Protein kinase C controls activation of the DNA integrity checkpoint

The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translatio…

research product

Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.

In the present work, a nanocomposite material formed by bacterial cellulose (BC) networks and calcium-deficient hydroxyapatite (HAp) powders was synthesized and characterized. The HAp nanoparticles were previously prepared by a wet chemical precipitation method, starting from aqueous solutions of calcium nitrate and di-ammonium phosphate salts. Energy-dispersive spectroscopy reveals that the prepared HAp corresponds to calcium-deficient hydroxyapatite. BC-HAp nanocomposites were prepared by introducing carboxymethylcellulose (CMC) into the bacteria culture media. HAp nanoparticles were then introduced and remained suspended in the culture medium during the formation of cellulose nanofibrils…

research product

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

research product

Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface.

In most lipases a mobile element or lid domain covers the catalytic site of the enzyme and the lid opening event, which usually proceed at a lipid-water interface, is required to form the catalytically competent lipase. We report here a noticeable increase in activity of two fungal lipases assayed in aqueous solution in absence of any interface when adding submicellar concentrations of amphipathic physiological molecules like long-chain acyl-CoAs. The catalytic activity was dramatically dependent on the acyl chain length of the amphiphile and could be related with a lid-opening process. Our data support that lipase activation can be triggered in the absence of a well-defined interface, and …

research product

A transmembrane serine residue in the Rot1 protein is essential for yeast cell viability

Polar residues are present in TM (transmembrane) helices and may influence the folding or association of membrane proteins. In the present study, we use an in vivo approach to analyse the functional and structural roles for amino acids in membrane-spanning motifs using the Rot1 (reversal of Tor2 lethality 1) protein as a model. Rot1 is an essential membrane protein in Saccharomyces cerevisiae and it contains a single TM domain. An alanine insertion scanning analysis of this TM helix revealed that the integrity of the central domain is essential for protein function. We identified a critical serine residue inside the helix that plays an essential role in maintaining cell viability in S. cere…

research product

Optimization of Cell Growth on Bacterial Cellulose by Adsorption of Collagen and Poly-L-Lysine

Poly-L-lysine and collagen were separately added to bacterial cellulose (BC) nanofibers. The ionic surface charge had been previously modified in order to promote the adsorption of poly-L-lysine and collagen. Cell adhesion of Chinese hamster ovary (CHO) cells on BC surfaces was confirmed by removing unattached cells from the BC substrates. Cell viability was calculated and it was determined that both poly-L-lysine-BC and collagen-BC substrates are viable for cell growth. The results showed that the cell viability in poly-L-lysine modified BC substrate is similar to the one observed in polystyrene tissue culture plates.

research product

The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress

ABSTRACT Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not share…

research product