6533b835fe1ef96bd129ebcf

RESEARCH PRODUCT

The yeast Aft1 transcription factor activates ribonucleotide reductase catalytic subunit RNR1 in response to iron deficiency

Cristina Ros-carreroAntonia María RomeroSergi PuigM. Carmen BañóMaría Teresa Martínez-pastorLucía Ramos-alonso

subject

Transcriptional ActivationRibonucleotideSaccharomyces cerevisiae ProteinsProtein subunitIronSaccharomyces cerevisiaeDeoxyribonucleotidesBiophysicsSaccharomyces cerevisiaeResponse ElementsBiochemistry03 medical and health sciencesStructural BiologyTranscription (biology)Gene Expression Regulation FungalRibonucleotide ReductasesGeneticsMolecular BiologyTranscription factorRibonucleotide reductase030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyChemistryIron deficiency030302 biochemistry & molecular biologyHigh Mobility Group ProteinsIron Deficienciesbiology.organism_classificationCell biologyDNA-Binding ProteinsRibonucleotide reductaseRegulonEnzymeYeast/TranscriptionProtein BindingTranscription Factors

description

Eukaryotic ribonucleotide reductases are iron-dependent enzymes that catalyze the rate-limiting step in the de novo synthesis of deoxyribonucleotides. Multiple mechanisms regulate the activity of ribonucleotide reductases in response to genotoxic stresses and iron deficiency. Upon iron starvation, the Saccharomyces cerevisiae Aft1 transcription factor specifically binds to iron-responsive cis elements within the promoter of a group of genes, known as the iron regulon, activating their transcription. Members of the iron regulon participate in iron acquisition, mobilization and recycling, and trigger a genome-wide metabolic remodeling of iron-dependent pathways. Here, we describe a mechanism that optimizes the activity of yeast ribonucleotide reductase when iron is scarce. We demonstrate that Aft1 and the DNA-binding protein Ixr1 enhance the expression of the gene encoding for its catalytic subunit, RNR1, in response to iron limitation, leading to an increase in both mRNA and protein levels. By mutagenesis of the Aft1-binding sites within RNR1 promoter, we conclude that RNR1 activation by iron depletion is important for Rnr1 protein and deoxyribonucleotide synthesis. Remarkably, Aft1 also activates the expression of IXR1 upon iron scarcity through an iron-responsive element located within its promoter. These results provide a novel mechanism for the direct activation of ribonucleotide reductase function by the iron-regulated Aft1 transcription factor.

10.1016/j.bbagrm.2020.194522http://hdl.handle.net/10261/205658