6533b82bfe1ef96bd128e23b

RESEARCH PRODUCT

Photoelectrochemical monitoring of rouging and de-rouging on AISI 316L

Monica SantamariaG. MassaroF. Di FrancoF. Di Quarto

subject

Materials scienceBand gap020209 energyGeneral Chemical EngineeringIron oxideOxidechemistry.chemical_element02 engineering and technologyB. EISCorrosionB. Cyclic voltammetryC. Passive filmchemistry.chemical_compoundChromium0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceChemical Engineering (all)DissolutionAqueous solutionMetallurgyChemistry (all)C. PhotoelectrochemistryGeneral ChemistryC. Anodic filmSettore ING-IND/23 - Chimica Fisica ApplicatachemistryRougingA. Stainless steelMaterials Science (all)Nuclear chemistry

description

Electrochemical conditions for inducing rouging on surface of AISI 316L in quasi neutral aqueous solution are studied. Potentiostatic polarization at 0.6 V vs. SSC at pH ∼ 7 allowed growth of colourless passive films with a band gap slightly lower than that estimated for the oxide grown on the SS surface by air exposure due to chromium dissolution. Under stronger anodic polarization (UE = 1.5 V vs. SSC) coloured passive films are formed, mainly constituted by iron oxide according to their band gap (Eg = 2.0 eV). Etching in citric acid at 60 °C results to be effective in removing rouging.

10.1016/j.corsci.2016.12.016http://hdl.handle.net/10447/223271