6533b82bfe1ef96bd128e2b5
RESEARCH PRODUCT
Locally tame plane polynomial automorphisms
Stefan MaubachJean-philippe FurterJoost BersonAdrien Duboulozsubject
PolynomialRank (linear algebra)Polynomial ringPolynomial automorphismsCommutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryFOS: MathematicsAlgebra en Topologie0101 mathematicsAlgebraic Geometry (math.AG)MathematicsAlgebra and TopologyAlgebra and Number TheoryPlane (geometry)local tameness010102 general mathematicsA domainMathematics - Commutative AlgebraAutomorphism[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]010101 applied mathematicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R10description
Abstract For automorphisms of a polynomial ring in two variables over a domain R , we show that local tameness implies global tameness provided that every 2-generated locally free R -module of rank 1 is free. We give examples illustrating this property.
year | journal | country | edition | language |
---|---|---|---|---|
2010-11-03 | Journal of Pure and Applied Algebra |