6533b82bfe1ef96bd128e32e

RESEARCH PRODUCT

The 1-way on-line coupled model system MECO(n) – Part 4: Chemical evaluation (based on MESSy v2.52)

Astrid KerkwegAstrid KerkwegPatrick JöckelChristiane HofmannMariano MertensHolger Tost

subject

ECHAM010504 meteorology & atmospheric sciencesScale (ratio)Meteorologylcsh:QE1-996.5Model system010501 environmental sciences01 natural scienceslcsh:GeologyTroposphereDiurnal cycleAtmospheric chemistryErdsystem-ModellierungCOSMO EMAC Evaluation ChemistrySatellite0105 earth and related environmental sciencesLine (formation)

description

Abstract. For the first time a simulation incorporating tropospheric and stratospheric chemistry using the newly developed MECO(n) model system is performed. MECO(n) is short for MESSyfied ECHAM and COSMO model nested n-times. It features an on-line coupling of the COSMO-CLM model, equipped with the Modular Earth Submodel System (MESSy) interface (called COSMO/MESSy), with the global atmospheric chemistry model ECHAM5/MESSy for Atmospheric Chemistry (EMAC). This on-line coupling allows a consistent model chain with respect to chemical and meteorological boundary conditions from the global scale down to the regional kilometre scale. A MECO(2) simulation incorporating one regional instance over Europe with 50 km resolution and a one instance over Germany with 12 km resolution is conducted for the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. The main goal of this evaluation is to ensure, that the chemistry related MESSy submodels and the on-line coupling with respect to the chemistry are correctly implemented. This evaluation is a prerequisite for the further usage of MECO(n) in atmospheric chemistry related studies. Results of EMAC and the two COSMO/MESSy instances are compared with satellite-, ground-based- and aircraft in situ observations, focusing on ozone, carbon monoxide and nitrogen dioxide. Further the methane lifetimes in EMAC and the two COSMO/MESSy instances are analysed in view of the tropospheric oxidation capacity. From this evaluation we conclude that the chemistry related submodels and the on-line coupling with respect to the chemistry are correctly implemented. In comparison with observations both, EMAC and COSMO/MESSy, show strengths and weaknesses. Especially in comparison to aircraft in situ observations COSMO/MESSy shows very promising results. However, the amplitude of the diurnal cycle of ground-level ozone measurements is underestimated. Most of the differences between COSMO/MESSy and EMAC can be attributed to differences in the dynamics of both models, which is subject to further model developments.

10.5194/gmd-9-3545-2016https://www.geosci-model-dev.net/9/3545/2016/