6533b82bfe1ef96bd128e34e

RESEARCH PRODUCT

Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis

Calogero Vetro

subject

Asymptotic analysisLaplace transformGeneral Mathematics010102 general mathematicsNonparametric statistics01 natural sciencesDirichlet boundary value problem010101 applied mathematicsasymptotic analysisA-Laplace operatorOrlicz-Sobolev spaceSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsParametric statisticsMathematics

description

We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.

https://doi.org/10.3233/asy-201612