6533b82bfe1ef96bd128e34e
RESEARCH PRODUCT
Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis
Calogero Vetrosubject
Asymptotic analysisLaplace transformGeneral Mathematics010102 general mathematicsNonparametric statistics01 natural sciencesDirichlet boundary value problem010101 applied mathematicsasymptotic analysisA-Laplace operatorOrlicz-Sobolev spaceSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsParametric statisticsMathematicsdescription
We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-04 | Asymptotic Analysis |