6533b82cfe1ef96bd128eb45

RESEARCH PRODUCT

Processing of O6-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles.

Bernd KainaSteve QuirosWynand P. Roos

subject

DNA ReplicationProgrammed cell deathMethylnitronitrosoguanidineCell cycle checkpointGuanineDNA repairBlotting WesternSuccinimidesApoptosisCHO CellsBiologychemistry.chemical_compoundO(6)-Methylguanine-DNA MethyltransferaseCricetulusCricetinaeDNA adductAnimalsDNA Breaks Double-StrandedMolecular BiologyCell CycleCell BiologyCell cycleFlow CytometryFluoresceinsMolecular biologyCell biologychemistryMicroscopy FluorescenceApoptosisDNA mismatch repairDNADevelopmental Biology

description

The DNA adduct O(6)-methylguanine (O(6)MeG) induced by environmental genotoxins and anticancer drugs is a highly mutagenic, genotoxic and apoptotic lesion. Apoptosis induced by O(6)MeG requires mismatch repair (MMR) and proliferation. Models of O(6)MeG-triggered cell death postulate that O(6)MeG/T mispairs activate MMR giving rise to either direct genotoxic signaling or secondary lesions that trigger apoptotic signaling in the 2(nd) replication cycle. To test these hypotheses, we used a highly synchronized cell system competent and deficient for the repair of O(6)MeG adducts, which were induced by the S(N)1 methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We show that DNA double-strand breaks (DSBs) are formed in response to O(6)MeG at high level in the 2nd S/G(2)-phase of the cell cycle. This is accompanied by ATR and Chk1 phosphorylation, G(2)/M arrest and late caspase activation. Although cells undergo apoptosis out of the 2nd G(2)/M-phase, the majority of them recovers and undergoes apoptosis after passing through additional replication cycles. The late apoptotic effects were completely abolished by O(6)-methylguanine-DNA methyltransferase, indicating that non-repaired O(6)MeG is carried over into subsequent generations, eliciting there a late apoptotic response. We also demonstrate that with a low, non-toxic dose of MNNG the passage of cells through the 1st and 2nd S-phase is not delayed, although the dose is able to induce excessive sister chromatid exchanges. This suggests that a significant amount of O(6)MeG can be tolerated by recombination, which is a fast and highly efficient process preventing from S-phase blockage, DSB formation and cell death.

10.4161/cc.9.1.10363https://pubmed.ncbi.nlm.nih.gov/20130447