6533b82cfe1ef96bd128eca1
RESEARCH PRODUCT
Convolutional architectures for virtual screening
Isabella MendoliaSalvatore ContinoRoberto PirroneUgo PerriconeEdoardo Ardizzonesubject
Virtual screeningComputer sciencelcsh:Computer applications to medicine. Medical informaticsMachine learningcomputer.software_genre01 natural sciencesBiochemistryDrug design03 medical and health sciencesUser-Computer InterfaceStructural Biology0103 physical sciencesRepresentation (mathematics)lcsh:QH301-705.5Molecular BiologyBioactivity predictionSelection (genetic algorithm)030304 developmental biologySettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni0303 health sciencesVirtual screening010304 chemical physicsbusiness.industryApplied MathematicsResearchProcess (computing)Deep learningComputer Science Applicationslcsh:Biology (General)Molecular fingerprintslcsh:R858-859.7Artificial intelligenceDNA microarraybusinesscomputerAlgorithmsdescription
Abstract Background A Virtual Screening algorithm has to adapt to the different stages of this process. Early screening needs to ensure that all bioactive compounds are ranked in the first positions despite of the number of false positives, while a second screening round is aimed at increasing the prediction accuracy. Results A novel CNN architecture is presented to this aim, which predicts bioactivity of candidate compounds on CDK1 using a combination of molecular fingerprints as their vector representation, and has been trained suitably to achieve good results as regards both enrichment factor and accuracy in different screening modes (98.55% accuracy in active-only selection, and 98.88% in high precision discrimination). Conclusion The proposed architecture outperforms state-of-the-art ML approaches, and some interesting insights on molecular fingerprints are devised.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-01 | BMC Bioinformatics |