6533b82cfe1ef96bd128ecfe

RESEARCH PRODUCT

Phonon Driven Floquet Matter.

Umberto De GiovanniniUmberto De GiovanniniAngel RubioAngel RubioHannes HübenerHannes Hübener

subject

Floquet theoryFloquet theoryPhononphotoelectron spectroscopynonequilibrium bandstructureFOS: Physical sciencesSemiclassical physicsBioengineeringAngle-resolved photoemission spectroscopy02 engineering and technologyElectronic structureelectron?phonon coupling01 natural sciencesSettore FIS/03 - Fisica Della MateriaFirst-principles calculations0103 physical sciencesGeneral Materials Science010306 general physicsElectronic band structurePhysicsCondensed Matter - Materials Sciencepumpprobe spectroscopyCondensed matter physicsMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsExcited stateElectron configuration0210 nano-technology

description

The effect of electron–phonon coupling in materials can be interpreted as a dressing of the electronic structure by the lattice vibration, leading to vibrational replicas and hybridization of electronic states. In solids, a resonantly excited coherent phonon leads to a periodic oscillation of the atomic lattice in a crystal structure bringing the material into a nonequilibrium electronic configuration. Periodically oscillating quantum systems can be understood in terms of Floquet theory, which has a long tradition in the study of semiclassical light-matter interaction. Here, we show that the concepts of Floquet analysis can be applied to coherent lattice vibrations. This coupling leads to phonon-dressed quasi-particles imprinting specific signatures in the spectrum of the electronic structure. Such dressed electronic states can be detected by time- and angular-resolved photoelectron spectroscopy (ARPES) manifesting as sidebands to the equilibrium band structure. Taking graphene as a paradigmatic material with strong electron–phonon interaction and nontrivial topology, we show how the phonon-dressed states display an intricate sideband structure revealing the electron–phonon coupling at the Brillouin zone center and topological ordering of the Dirac bands. We demonstrate that if time-reversal symmetry is broken by the coherent lattice perturbations a topological phase transition can be induced. This work establishes that the recently demonstrated concept of light-induced nonequilibrium Floquet phases can also be applied when using coherent phonon modes for the dynamical control of material properties.

10.1021/acs.nanolett.7b05391https://pubmed.ncbi.nlm.nih.gov/29361223