6533b82cfe1ef96bd128edb1

RESEARCH PRODUCT

Stochastic dynamics of nonlinear systems with a fractional power-law nonlinear term: The fractional calculus approach

Mario Di PaolaGiulio CottoneGiulio CottoneSalvatore Butera

subject

Differential equationOpen problemAerospace EngineeringOcean EngineeringFractional calculuStochastic differential equationsymbols.namesakeFractional programmingNonlinear viscous–elastic damperCivil and Structural EngineeringMathematicsStochastic differential equationMechanical EngineeringCharacteristic functionMathematical analysisPower-law driftStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsFractional differential equationFractional calculusNonlinear systemNuclear Energy and EngineeringGaussian noisesymbolsSettore ICAR/08 - Scienza Delle Costruzioni

description

Fractional power-law nonlinear drift arises in many applications of engineering interest, as in structures with nonlinear fluid viscous–elastic dampers. The probabilistic characterization of such structures under external Gaussian white noise excitation is still an open problem. This paper addresses the solution of such a nonlinear system providing the equation governing the evolution of the characteristic function, which involves the Riesz fractional operator. An efficient numerical procedure to handle the problem is also proposed.

https://doi.org/10.1016/j.probengmech.2010.06.010