6533b82cfe1ef96bd128f4ca

RESEARCH PRODUCT

The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles

Salvador MeseguerSalvador MafeJavier Cervera

subject

0301 basic medicineMembrane potentialMultidisciplinaryEcologyCellGap junctionRegionalisationBiologyModels BiologicalArticleIon ChannelsMembrane Potentials03 medical and health sciencesMulticellular organism030104 developmental biologymedicine.anatomical_structureKinetic equationsmedicineBiophysicsAnimalsDrosophilaSignal transductionIon channelSignal Transduction

description

AbstractThe single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation.

https://fundanet.cipf.es/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1403