6533b82cfe1ef96bd128f5f5
RESEARCH PRODUCT
Fingerprint classification based on deep learning approaches: Experimental findings and comparisons
Carmelo MilitelloSalvatore VitabileVincenzo ContiLeonardo Rundosubject
Physics and Astronomy (miscellaneous)BiometricsComputer scienceGeneral Mathematicsfingerprint featuresfingerprint classification; deep learning; convolutional neural networks; fingerprint featuresConvolutional neural networks Deep learning Fingerprint classification Fingerprint featuresImage processing02 engineering and technologyConvolutional neural networkField (computer science)fingerprint classification020204 information systemsconvolutional neural networksQA1-9390202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Reliability (statistics)business.industryDeep learningFingerprint (computing)deep learningPattern recognitionIdentification (information)Chemistry (miscellaneous)Convolutional neural networks; Deep learning; Fingerprint classification; Fingerprint features020201 artificial intelligence & image processingArtificial intelligencebusinessMathematicsdescription
Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs), tested on two fingerprint databases—namely, PolyU and NIST—and comparisons to other results presented in the literature in order to establish the type of classification that allows us to obtain the best performance in terms of precision and model efficiency, among approaches under examination, namely: AlexNet, GoogLeNet, and ResNet. We present the first study that extensively compares the most used CNN architectures by classifying the fingerprints into four, five, and eight classes. From the experimental results, the best performance was obtained in the classification of the PolyU database by all the tested CNN architectures due to the higher quality of its samples. To confirm the reliability of our study and the results obtained, a statistical analysis based on the McNemar test was performed.
year | journal | country | edition | language |
---|---|---|---|---|
2021-04-26 |