6533b82cfe1ef96bd128f623
RESEARCH PRODUCT
Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth
Laure GueninLaure GueninMahatsangy RaharijaonaMahatsangy RaharijaonaRémi HoulgatteRémi HoulgatteFawzia Baba-aissasubject
Central Nervous SystemMESH : Transcription FactorsMESH: DrosophilaOF-FUNCTION SCREEN;MUSCA-DOMESTICA L;HOUSE-FLY LARVA;FINE-STRUCTURE;AXON GUIDANCE;TRANSCRIPTION FACTOR;PATTERN-FORMATION;GENETIC-ANALYSIS;NERVOUS-SYSTEMGenes InsectMESH: Genes InsectAXON GUIDANCEMUSCA-DOMESTICA L0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalCluster AnalysisDrosophila ProteinsMESH: AnimalsTRANSCRIPTION FACTORMESH: Nerve Tissue ProteinsMESH : Nerve Tissue ProteinsOF-FUNCTION SCREENOligonucleotide Array Sequence AnalysisGenetics0303 health sciencesMESH : Central Nervous SystemMicrobiology and ParasitologyMESH : Genes InsectGene Expression Regulation DevelopmentalNuclear ProteinsMESH: Transcription FactorsNull alleleMicrobiologie et ParasitologieMESH : Oligonucleotide Array Sequence Analysis[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Larva[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]DrosophilaDrosophila ProteinResearch ArticleBiotechnologylcsh:QH426-470MESH: Drosophila Proteinslcsh:BiotechnologyNerve Tissue ProteinsBiotechnologiesBiology03 medical and health sciencesMESH: Gene Expression ProfilingGENETIC-ANALYSIS[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:TP248.13-248.65GeneticsAnimalsMESH : Cluster AnalysisMESH: Central Nervous SystemAlleleMESH : DrosophilaAlleles030304 developmental biologyMESH : LarvaMicroarray analysis techniquesHOUSE-FLY LARVAGene Expression ProfilingMESH : Gene Expression ProfilingMESH: AllelesWild typeMESH : Nuclear ProteinsProsperobiology.organism_classificationMESH : Drosophila ProteinsMESH: Cluster AnalysisNERVOUS-SYSTEMGene expression profilinglcsh:GeneticsMESH: Oligonucleotide Array Sequence AnalysisHomeoboxMESH : AnimalsMESH : Gene Expression Regulation DevelopmentalMESH : AllelesMESH: Nuclear ProteinsMESH: Larva030217 neurology & neurosurgeryTranscription FactorsPATTERN-FORMATIONFINE-STRUCTUREdescription
AbstractBackgroundThe antenno-maxilary complex (AMC) forms the chemosensory system of theDrosophilalarva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1,V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role ofprosin cell fate decision, but strongly suggested thatproscould be involved in the control of other aspect of neuronal development. In order to identify these functions, we used microarray analysis of larval AMC and CNS tissue isolated from the wild type, and three other previously characterisedprosperoalleles, including theV1mutant, considered as a null allele for the AMC.ResultsA total of 17 samples were first analysed with hierarchical clustering. To determine those genes affected by loss ofprosfunction, we calculated a discriminating score reflecting the differential expression betweenV1mutant and otherprosalleles. We identified a total of 64 genes in the AMC. Additional manual annotation using all the computed information on the attributed role of these genes in theDrosophilalarvae nervous system, enabled us to identify one functional category of potential Prospero target genes known to be involved in neurite outgrowth, synaptic transmission and more specifically in neuronal connectivity remodelling. The second category of genes found to be differentially expressed between the null mutant AMC and the other alleles concerned the development of the sensory organs and more particularly the larval olfactory system. Surprisingly, a third category emerged from our analyses and suggests an association ofproswith the genes that regulate autophagy, growth and insulin pathways. Interestingly, EGFR and Notch pathways were represented in all of these three functional categories. We now propose that Pros could perform all of these different functions through the modulation of these two antagonistic and synergic pathways.ConclusionsThe current data contribute to the clarification of theprosperofunction in the larval AMC and show thatprosregulates different function in larvae as compared to those controlled by this gene in embryos. In the future, the possible mechanism by which Pros could achieve its function in the AMC will be explored in detail.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 |