6533b82cfe1ef96bd1290036
RESEARCH PRODUCT
Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms
Francesca VetroCalogero VetroNikolaos S. Papageorgiousubject
Differential inclusionPure mathematicsApplied Mathematics010102 general mathematicsRegular polygonMaximal monotone mapAnalysiPerturbation (astronomy)Bang-bang controlExtremal trajectorieDifferential operator01 natural sciencesDirichlet distribution010101 applied mathematicsNonlinear systemsymbols.namesakeMonotone polygonSettore MAT/05 - Analisi MatematicaNorm (mathematics)symbols0101 mathematicsExtreme pointStrong relaxationAnalysisMathematicsdescription
Abstract We consider differential systems in R N driven by a nonlinear nonhomogeneous second order differential operator, a maximal monotone term and a multivalued perturbation F ( t , u , u ′ ) . For periodic systems we prove the existence of extremal trajectories, that is solutions of the system in which F ( t , u , u ′ ) is replaced by ext F ( t , u , u ′ ) (= the extreme points of F ( t , u , u ′ ) ). For Dirichlet systems we show that the extremal trajectories approximate the solutions of the “convex” problem in the C 1 ( T , R N ) -norm (strong relaxation).
year | journal | country | edition | language |
---|---|---|---|---|
2018-05-01 | Journal of Mathematical Analysis and Applications |