6533b82cfe1ef96bd129003e
RESEARCH PRODUCT
The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase
Reimund GossDaniel HusterDaniel HusterHolger A. ScheidtCindy MontagPeter SchmidtAstrid VielerChristian WilhelmMartin LohrJanine F. Nowoiskysubject
Magnetic Resonance SpectroscopyBiophysicsAnalytical chemistryPhospholipidMonogalactosyldiacylglycerolXanthophyllsBiochemistryViolaxanthin de-epoxidaseModels BiologicalPhase Transitionchemistry.chemical_compoundDifferential scanning calorimetrySpinacia oleraceaPhase (matter)31P NMRInverted hexagonal phaseDe-epoxidationchemistry.chemical_classificationPhosphatidylethanolaminePhospholipid structuresChemistryPhosphatidylethanolaminesTemperatureCell BiologyNuclear magnetic resonance spectroscopyLipid MetabolismSolubilityArrheniusXanthophyllBiophysicsOxidoreductasesViolaxanthindescription
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.
year | journal | country | edition | language |
---|---|---|---|---|
2008-04-01 | Biochimica et Biophysica Acta (BBA) - Biomembranes |