6533b82cfe1ef96bd1290070

RESEARCH PRODUCT

Structural and luminescence properties of amorphous SiO2 nanoparticles

Simonpietro AgnelloGianpiero BuscarinoG. VaccaroMarco CannasLavinia Vaccaro

subject

Materials Chemistry2506 Metals and AlloysPhotoluminescenceMaterials scienceShell (structure)Analytical chemistryNanoparticleCeramics and CompositeSilica nanoparticleCondensed Matter PhysicMolecular physicssymbols.namesakeMaterials ChemistryPoint-defectRamannanoparticelle di silice difetti di punto fotoluminescenzaElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica SperimentaleTime-resolved luminescenceCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialsAmorphous solidCeramics and CompositessymbolsParticle sizeRaman spectroscopyLuminescence

description

We report an experimental study on the photoluminescence band peaked at 2.7 eV (blue band) induced by thermal treatments in nanometric amorphous SiO 2. In particular the emission dependence on the nanometric particles size as a function of their mean diameter from 7 nm up to 40 nm is investigated. We found that the emission amplitude increases on decreasing the particle diameter, showing a strong correlation between the blue band and the nanometric nature of the particles. By Raman spectroscopy measurements it is evidenced that the SiO2 nanoparticles matrix is significantly affected by the reduction of size. Basing on the shell-like model, these findings are interpreted assuming that the defects responsible for the photoluminescence are localized on a surface shell of the particles and not simply on their surface. In addition it is found that the generation efficiency of these defects depends on the structural properties of the SiO2 matrix in the surface shell. © 2011 Elsevier B.V. All rights reserved.

10.1016/j.jnoncrysol.2010.10.040http://hdl.handle.net/10447/53855